Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Using Analytics to Identify New Valuable Customers
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Using Analytics to Identify New Valuable Customers
AnalyticsBest PracticesCRMMarketing

Using Analytics to Identify New Valuable Customers

Editor SDC
Editor SDC
3 Min Read
SHARE
Value segments can provide useful information for the development of effective Acquisition models. Acquisition campaigns aim at the increase of the market share through expansion of the customer base with customers new to the market or drawn from competitors. In mature markets there is a fierce competition for acquiring new customers. Each organization incorporates aggressive strategies, massive advertisements and discounts to attract prospects.

Value segments can provide useful information for the development of effective Acquisition models. Acquisition campaigns aim at the increase of the market share through expansion of the customer base with customers new to the market or drawn from competitors. In mature markets there is a fierce competition for acquiring new customers. Each organization incorporates aggressive strategies, massive advertisements and discounts to attract prospects.

Analytics can be used to guide the customer acquisition efforts. However a typical difficulty with acquisition models is the availability of input data. The amount of information available for people who do not yet have a relationship with the organization is generally limited compared to information about existing customers. Without data you can not build predictive models. Thus data on prospects must be collected. Most often buying data on prospects at an individual or postal code level can resolve this issue.

A usual approach in such cases is to run a test campaign on a random sample of prospects, record their responses and analyze them with predictive models (classification models like decision trees for example) in order to identify the profiles associated with increased probability of offer acceptance.

The derived models can then be used to score all prospects in terms of acquisition probability. The tricky part in this method is that it requires the roll out of a test campaign to record prospect responses in order to be able to train the respective models. However, an organization should not try to get any customer but it should focus on new customers with value prospects . Therefore, an alternative approach, which of course can be combined with the one described above, is to search for potentially valuable customers.
According to this approach the model is trained (again a classification model) on existing customers, it identifies the profile of the high value customers and then extrapolates it into the list of prospects to discern the ones with similar characteristics. The key to this process is to build a model on existing customers using only fields that are also available for prospects. For example, if only demographics are available for prospects, the respective model should be trained only with such data.
Acquisition marketing activities could target new customers with the ‘valuable’ profile and new products related to these profiles could be developed, aiming to acquire new customers with profit possibilities.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive
qr codes for data-driven marketing
Role of QR Codes in Data-Driven Marketing
Big Data Exclusive
microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

artificial intelligence changing marketing forever
Artificial IntelligenceExclusiveMachine LearningMarketing

6 Ways AI is Transforming Marketing Forever

8 Min Read

Entities, Relationships, and Semantics: Strata NY Panel on the State of Structured Search

1 Min Read

Q: What is Social Design? A: It’s design for the greater good….

0 Min Read

Mission: To convert the power in high altitude winds into clean…

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?