By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: From Big Data to Smart Data: Supporting Critical Business Decisions
Share
Notification Show More
Latest News
ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > From Big Data to Smart Data: Supporting Critical Business Decisions
AnalyticsBest PracticesData MiningPredictive Analytics

From Big Data to Smart Data: Supporting Critical Business Decisions

mfauscette
Last updated: 2012/05/10 at 12:57 PM
mfauscette
5 Min Read
SHARE
Last week at Lithium’s LiNC event I did a session on big data with Lithium Principal Scientist Dr Michael Wu. It’s always a pleasure working with Michael, the session was well attended and the audience was very engaged.

Last week at Lithium’s LiNC event I did a session on big data with Lithium Principal Scientist Dr Michael Wu. It’s always a pleasure working with Michael, the session was well attended and the audience was very engaged. Since then I have been thinking about what we presented and I think there were a few key points that are very important in understanding how businesses can start to make use of data to support business decisions.

First I should bring back out a system model that I’m using to represent the three basic systems that we need in the enterprise today; systems of transaction, systems of decision and systems of relationship. It’s important to understand the three systems, how they’re different and more importantly how they are interrelated.

Systems of transaction are the application foundation for the modern enterprise. They are designed to automate routine business processes and support business transactions. They are also the source for most of the structured enterprise data. Systems of relationship are the new social solutions that enable peer to peer collaboration, content sharing, and community. The systems are used to connect employees, customers, partners and other stakeholders together and to content, data and other enterprise systems.

More Read

data security in big data age

6 Reasons to Boost Data Security Plan in the Age of Big Data

How Big Data Is Transforming the Maritime Industry
Utilizing Data to Discover Shortcomings Within Your Business Model
Small Businesses Use Big Data to Offset Risk During Economic Uncertainty
The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

The third system, decision, represents the evolution of analytics and business intelligence from specialty tools that could only be used by specially trained analysts, to a system that puts analytics into the workflow, in context and as an end user tool. This concept is very important, the move from a system used by a few to look at history, to a system that is integral to the decision process. Systems of decision move information to the “right” person, at the time of need and in a work context.

So how does big data play into this decision system concept? Big data is a hot topic and according to IDC last year alone the world created ~1.8 zettabytes of new data growing by a factor of 9 over the next 5 years. The other part of that story is that much of the data is unstructured, which creates its own set of issues. Now on the face of it, it does seem that with the mountain of new data growing at a staggering pace that businesses must need to “do” something with it. The problem though, is exactly what to do? Just because the data’s out there, and no doubt it’s big, doesn’t make it relevant, consumable or more importantly actionable. Data minus context can’t be turned into usable information. There’s also the problem with redundancy, a lot of data is redundant, and therefore isn’t important even if you can add context and relevance.

Data is useful and actionable only if it’s of interest to me (relevant) at the specific place and time (contextual) of use. The rest of the pile of “big data” is then, not of interest to me at all. The usefulness of big data is individual to a specific place / time, in the context of a specific issue or problem; or in other words, one person’s signal (actionable data) is noise to someone else. Some of the data then is useful and of interest but you must know what questions to ask, for whom, and when and where it will be of use to solve a specific problem or issue, otherwise, big data is just dumb data.

So the real challenge for systems of decision is to turn the dumb data into smart data, or maybe more accurately, information. Systems of decision have to provide relevant, useful, actionable, intuitive, digestible and interactive information to the right person at the right time. The next generation of analytics are systems of decision that can provide the relevant information to every system user, in work context, to make smart business decisions. Here’s a socialytics concept from Michael that fits this smart data / system of decision model:

Tags: big data, smart data, lithium, LiNC, socbiz, community, SCRM

 

 

TAGGED: big data, community, scrm, smart data, socbiz
mfauscette May 10, 2012
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data security in big data age
Big Data

6 Reasons to Boost Data Security Plan in the Age of Big Data

7 Min Read
How Big Data Is Transforming the Maritime Industry
Big Data

How Big Data Is Transforming the Maritime Industry

8 Min Read
utlizing big data for business model
Big Data

Utilizing Data to Discover Shortcomings Within Your Business Model

6 Min Read
big data use in small businesses
Big Data

Small Businesses Use Big Data to Offset Risk During Economic Uncertainty

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?