Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data, Enterprise Data and Discrete Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Culture/Leadership > Big Data, Enterprise Data and Discrete Data
AnalyticsBusiness IntelligenceCulture/LeadershipData MiningData Quality

Big Data, Enterprise Data and Discrete Data

SteveSarsfield
SteveSarsfield
5 Min Read
SHARE

Total Data Management
The data management world is buzzing about big data.  Many are the number of blog posts articles and white papers covering this new area. Just about every data management vendor is scrambling to build tools to meet the needs of big data.

Total Data Management
The data management world is buzzing about big data.  Many are the number of blog posts articles and white papers covering this new area. Just about every data management vendor is scrambling to build tools to meet the needs of big data.

The world is correct to pay notice. The ability for companies to handle big data represents exciting innovation where large relational databases with high price tags are sometimes replaced with flat files, technologies like Hadoop and intelligent parsers to create analytics from massive amounts of data.  It’s a game-changer for those in the Business Intelligence and relational database business.  It’s about managing an increasingly common huge data problem more effectively and at lower cost.

However, where there is big data, there is also enterprise (medium) data and discrete (small) data. With each size of data come very specific challenges.   

More Read

Dynamics 365
Key Points from Microsoft Dynamics 365 Tech Conference
Facts not fears, confidence not certainty, critical thinking not wishful thinking
Implementing Successful Business Intelligence Projects: What the 2014 World Cup Can Teach Us
New Generation of Location Analytics
6 Ways Data Analytics Can Improve Targeting with LinkedIn Ads
BIG DATA
ENTERPRISE DATA
DISCRETE DATA
Technologies
Hadoop and flat files to reduce costs and avoid relational database costs.
Relational databases
Spreadsheets and flat files and flat databases. May come from other non-relational sources, such as e-mail attachments, social media JSON, and XML data.
Use Cases
Real-time analytics of a large number of transactions, including web analytics, SaaS up-time optimization, mission-critical analysis of transactions
Just about every business application today, including CRM, ERP, Data Warehouse, and MDM.
Companies with no or little data management strategy, or for those companies dealing with immature data architecture. Companies who receive mission-critical data via e-mail.  Companies who need to closely follow social media streams.
Innovation
Handles huge amounts of data that is predominantly used for business analytics and operational BI.
Provides a power data management architecture that can be accessed by a common language (SQL).
Handles more diverse and more dynamic sources.
Positives
Replaces high cost multi-server relational databases with lower costs flat files and Hadoop server farms.
Provides a scalable, reproducible environment in which database applications and solutions can be developed. Replaces unwieldy human-intensive data processes with streamlined central repository of information. Used in many businesses in day-to-day operations.
‘Simplifies’ the data management process to the point of being completely within the grasp of the business users without too much complicated technology.  In the long run, however, data management is more costly and unwieldy when it is in spreadmarts.
Negatives
Relatively new technology with limited pool of Big Data experts. Legacy medium-sized systems can sometimes scale.
Can be costly when data volumes become high, as new servers and new enterprise licenses get more common.  Also, the number of sources and diversity of data types.
Error-prone and labor intensive.
Cost Focus
Expertise
Servers and licenses/ Connectors and database technology
Efficiency and productivity

















Growing Up
An organization’s data management maturity plays a role in big and little data.  If you’re still managing your customer list in a spreadsheet, it’s probably something you started when your company was fairly young.  Now, the uses for the data should be expanded and you are still stuck in the young company’s process. Something that was agile when you were young is inefficient today.

Your pain may also have something to do with your partners’ data management maturity.  While the other companies you do business with are good at what they do, supplying products and services to your company, they may not be as good at data management. The new parts catalog comes every so often as an e-mail attachment.  You need an efficient process to update whoever uses it.

No matter how mature you are, it is likely that you will have to deal with all types of data. When selecting tools, make sure you examine the cost and efficiency of all of these types, not just big data.


Covering the world of data integration, data governance, and data quality from the perspective of an industry insider.
TAGGED:big data
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive
qr codes for data-driven marketing
Role of QR Codes in Data-Driven Marketing
Big Data Exclusive
microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

master data management
Big DataBusiness IntelligenceExclusive

Master Data Becomes Incredible Differentiator For Countless Businesses

6 Min Read
utlizing big data for business model
Big Data

Utilizing Data to Discover Shortcomings Within Your Business Model

6 Min Read
big data processing tips
Big Data

A Few Proven Suggestions for Handling Large Data Sets

8 Min Read

10 Trends Shaping Big Data in Financial Services

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?