Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Readability of Decision Trees
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Readability of Decision Trees
Business IntelligenceData Mining

Readability of Decision Trees

SandroSaitta
SandroSaitta
2 Min Read
SHARE

One of the most often cited advantage of decision trees is their readability. Several data miners (to whom I belong) justify the use of this technique since it is quite easy to understand the obtained model (no black box). However, there are certain issues that make decision trees unreadable.

First, there is normalization (or standardization). In most projects, data have to be normalized before using decision tree. Therefore, once you plot the tr…


One of the most often cited advantage of decision trees is their readability. Several data miners (to whom I belong) justify the use of this technique since it is quite easy to understand the obtained model (no black box). However, there are certain issues that make decision trees unreadable.

First, there is normalization (or standardization). In most projects, data have to be normalized before using decision tree. Therefore, once you plot the tree, values are meaningless. Of course, you can map the data back in the original format, but it has to be done.

Second is the number of trees. In the project I carry on at my job, I can have 100 or more decision trees by month (see this post for more details). It is clearly impossible to read all these trees even if they are independently understandable. The same happens with random forests. When there are 1000 trees voting for a given class, how can one understand the process (or rules) that produce the class output?

Decision trees still have a lot of advantages. However, the “readability” advantage must be taken with care. It may be valid in some applications, but can often be a mirage.

More Read

ai climate change
How AI Startups Can Invest in Carbon Reduction Strategies
Enterprise Data Management Fitness – Look Before You Leap
Persuasion in simple terms
Researchers at the University of Edinburgh in Scotland…
The Knowledge Discovery Conference


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

social advertising
Big DataBusiness IntelligenceCloud ComputingCRMInside CompaniesITMarketingNew ProductsNewsSocial DataSocial Media Analytics

What the Launch of Social.com Shows Us

5 Min Read
AI legal software
Artificial IntelligenceExclusiveSoftware

AI Leads to Major Breakthroughs in Legal Software

7 Min Read

Strategies to survive the downturn

3 Min Read

An Enterprise 2.0 Framework for Success

10 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?