Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    payment methods
    How Data Analytics Is Transforming eCommerce Payments
    10 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Technology and the Effective Marketer
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Technology and the Effective Marketer
AnalyticsBest PracticesBig DataBusiness IntelligenceCRMCulture/LeadershipData ManagementDecision ManagementMarket ResearchMarketingPredictive AnalyticsPrivacySocial DataSocial Media Analytics

Technology and the Effective Marketer

mfauscette
mfauscette
6 Min Read
SHARE

business intelligenceIn this post, I’ll focus on customer intelligence driven marketing and the proper use of data. In the “information economy,” data is created at an unbelievable pace, but to make some reasonable business use of that data is challenging. The concept of being a data driven business isn’t new, but there are a lot of barriers that must be overcome, both technical and cultural.

business intelligenceIn this post, I’ll focus on customer intelligence driven marketing and the proper use of data. In the “information economy,” data is created at an unbelievable pace, but to make some reasonable business use of that data is challenging. The concept of being a data driven business isn’t new, but there are a lot of barriers that must be overcome, both technical and cultural. In other words businesses need to systematically move from “big data”, which is just a large pile of useless “stuff”, to “smart data”, or data in the right business context, delivered to the right person at the time of need. 

Analytics and business intelligence are evolving from the days of historical reporting to a dynamic approach to providing real time usable insights. From a system standpoint, I’ve written about this idea before, moving to systems of decision. I won’t go back through the 3 systems, transaction, decision and relationship again here, but you can refer to several other posts including this recent one on productivity.

The purpose of this series and this post is to talk about these systems of decision in the context of customer intelligence driven marketing and the data value chain. This application of data in the marketing context is a very important transition for marketing and requires a more coordinated and integrated approach both from the necessary technology and from the marketing employees themselves. Focusing on the data value chain it looks something like this:

More Read

Data Science
Take Your Data Science to the Next Level — Set It Free
The Success Factors of Effective Information Governance
Sex, Toys, and Big Data
Data Mining in the New Economy and How to Get Started
“Political prediction markets — in which participants buy and sell “contracts”…”

big data marketing

Customer Data Value Chain:

  • Collection – The collection and storage process isn’t something new really although it must involve more data sources, many of which are unstructured and will require new ways of storing and processing. Traditional data like customer information, transactions, service issues, etc. are a part of the mix of course (which presupposes that the company has a basic CRM system in place). The newer sources of data, which can come from social media monitoring tools, customer communities or even smart sensor data (think smart electrical meters for example), can prove a rich source of additional customer insights when processed and mapped with the traditional data sources.
  • Optimization – Once data is collected various types of analytic software can be used to make the data useful. The data is often integrated, processed and turned into various visualizations that could range from reports to dashboards. Optimized data is referenced to some business context that is the key to making the data into usable information.
  • Trend – Once data is processed and visualized in some way it can be used to establish historical trends that can be useful across many marketing activities. Trend data is used to refine targeting of campaigns, find cross sell opportunities, support dynamic web content, define and refine loyalty programs and a variety of other functions.
  • Predictive – Taking publically available social web data, which represents attitudes, opinions, needs, etc. of customers as well as transaction data and applying behavioral models can yield analysis that can with reasonable accuracy, predict customer and prospect behavior. There are a lot of uses of this model driven approach across marketing and sales. In the customer community context, for example, these behavioral models could be used to identify future influencers or find influencers that were starting to cool off on your brand. In sales the same techniques could predict buying signals to optimize sales efforts.
  • Decisions – The top of the chain is providing data in the correct business context and in real time to the right employee or group of employees to support effective business decisions. This move from backward facing historical data to forward facing real time decision support is the building block of the data driven enterprise. The systems of decision integrate with systems of relationship to help identify and bring together the optimized set of employees or other constituents in the business context of the issue, decision, problem, etc. to facilitate fast, efficient real time business issue resolution, strategy optimization and more accurate, iterative actions.

Just one additional thought about this data value chain, it does not and can not, in any way, risk customer / prospect privacy. This point is critical and a privacy breech is one of the fastest ways to tarnish a brand. The social data collected and analyzed must all be from public sources and any confidential customer data around transactions and other activities with the company must be protected. I hope this is just me being over careful with all the discussions and focus online over privacy, but I guess you never know.

TAGGED:crmcustomer data value chain
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Analytics Big Data Exclusive
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Customer Success
Artificial IntelligenceCRMMarketingMarketing Automation

How AI Play a Crucial Role in Customer Success

7 Min Read

Crossing the New Chasm – Moving From a Product Focus to Customer Relationships

5 Min Read
Loyalty 101: Are You Tracking The Right Data?
AnalyticsBig Data

Loyalty 101: Are You Tracking The Right Data?

4 Min Read

Does Data Quality Matter in Social Media?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?