Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Darwinism: Market Driven Data Quality
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Data Darwinism: Market Driven Data Quality
Data QualityMarketing

Data Darwinism: Market Driven Data Quality

Jim MacLennan
Jim MacLennan
5 Min Read
SHARE

Just trying a little contrarian thought this week …

Have you ever noticed how much time and energy goes in to data validation?

I think it stems from visual forms development and the wide variety of clever data entry controls that are available – everyone wants to write an app that gets the oooo, cool! vote of approval. But how much of that energy spills over from value-added to feature creep?

More Read

Automate Data Remediation to Find Dirty Data Before Your Customers Do
How to Apply Agile Marketing Strategies to Data Driven Enterprises
A Confederacy of Data Defects
Big Data and Business Intuition Work Together
First Look – Eagle Eye Analytics

Just trying a little contrarian thought this week …

Have you ever noticed how much time and energy goes in to data validation?

I think it stems from visual forms development and the wide variety of clever data entry controls that are available – everyone wants to write an app that gets the oooo, cool! vote of approval. But how much of that energy spills over from value-added to feature creep?

Regex complexity at its finest …

When your IT peers are showing off their internally developed tools, or when internal departments put so much creativity into their departmental data collection apps, try stepping back for a moment and taking a look at the amount of development, documentation, training, and maintenance work that gets generated. These amazing, subtle, and visually compelling methods for gathering and validating data can become complex validation rules that try to guarantee that only pristine data is ever added to the list.

Is all of this really necessary? Is there real value-add to this approach? Often times the coding of validation rules is so complex that the code becomes fragile, and burdensome on future maintenance programmers. Another common problem – many specialized, departmental, and/or narrowly vertical applications have broad ranges of acceptable data – and the rules for permissible values need to be wildly flexible and adaptive.

But how about NOT validating the input? Why not let “market forces” take over?

I am talking about instances where people are trying to get data into a System That Makes Some Problem Visible – for example, a database of projects or technical resource requests that have to be prioritized, or financial data that has to successfully post into a centralized data collection / aggregation system.

It might be easier to just document the requirements for the data, and then let the best quality data survive …

For your Project / Resource Prioritization application, a project will not get added to the prioritization list until all the data is complete and correct. Even if it is complete, it helps to make the project description easy to understand, compelling, and business relevant – or else someone else will get the resources.

Your monthly data submission has to conform to these [data structure] rules. If it does not conform, it will be kicked out / flagged with errors. You are responsible for getting your data cleaned up and compliant with the specification, and your data submitted by [the deadline] – else your submission will be late.

Now, this does put pressure on us to document the data formats and requirements clearly – but this is probably faster and easier than creating a gallery of automated rule checkers to validate input. And, when the document is proven to be complete, correct, and sufficient (i.e. not too complex), it would make a pretty good spec for an automated data validation program.

Just a wacky idea – as system designers, we don’t have to control the world. Try making market forces work in your favor, just like content struggling for readership on the internet or new products looking for sales …

… may the cleanest data win!

Share This Article
Facebook Pinterest LinkedIn
Share
ByJim MacLennan
Follow:
Jim MacLennan is Senior Vice President and Chief Information Officer at IDEX Corporation, a Fortune 1000 manufacturer that sells highly engineered products in a variety of markets worldwide. MacLennan has responsibility for Corporate IT services for all IDEX business units, and also drives innovation through initiatives that leverage Information and Technology as growth drivers for the industrial manufacturing space. He regularly publishes his observations and insights on the intersection of business and technology - check out his work at www.cazh1.com.

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

big data analytics
AnalyticsExclusiveMarketingNewsPredictive Analytics

How to Use Analytics for Effective Content Marketing

6 Min Read

Help Change the World with Data Science

2 Min Read
AI in marketing
Artificial Intelligence

Make These Three AI Marketing Mistakes at Your Peril

9 Min Read

‘Tis the Season for Data Quality

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?