Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Social Data – Understanding the Context and the Audience
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Social Data – Understanding the Context and the Audience
AnalyticsData MiningData QualitySocial Data

Social Data – Understanding the Context and the Audience

MarkBradbourne
MarkBradbourne
5 Min Read
SHARE

Social data is one of the many new frontiers within the spectrum of Business Intelligence. If you stop and think about the amount of data that Facebook and Twitter generate on a daily or even hourly basis it is staggering!

Social data is one of the many new frontiers within the spectrum of Business Intelligence. If you stop and think about the amount of data that Facebook and Twitter generate on a daily or even hourly basis it is staggering! Facebook states it have over 30,000 servers and generates 25 terabytes of log files a day! Twitter does analytics of its data, like this example from the last Super Bowl, and considering that to date Twitter has received 7 billion tweets that consist of over 104 billion words you can only imagine the potential value of that data to a company if they want to measure social acceptance of a brand for example. You want “Big Data”? You got it!

The topic of social data fascinates me, partly because of the real-time nature that the data possess, but also because of the mere size of the data sets available. I recent;y lectured at Kent State University and in discussing the world of BI as it stood today, I also wanted to give them a glimpse of the future and show them analytics on a “non-traditional” data set. Microsoft developed an application for Excel 2010 called PowerPivot, and the Microsoft BI Team has been able to do some really amazing things with it for analyzing data. They developed a project called “Analytics for Twitter” which is basically it’s an aggregator for Twitter data that will return any mention, hashtag or general search term based on the criteria provided.  In searching around for a good example to show the students at Kent I decided to look at tweets mentioning Walt Disney World based on what I already know from their BI practices. Considering they track many of their metrics in real-time from the parks I figured that it wouldn’t be a far stretch to consider Twitter data from inside the park, resorts and surrounding area.

A note about Analytics for Twitter, it comes pre-configured to assess a “mood” score based on key words and a 10 point sliding scale. After returning the data set for all things Disney I noticed that there was a strong slant to “negative” tweets. Having been to Disney many times, I couldn’t for the life of me figure out what would be so bad that I would be compelled to tweet negatively about it. I started to parse through the data and I didn’t see anything that stands out as overly negative. Then I moved to examine the mood scale and key words and noticed that the emoticon ” : ( ” was set to a negative value and there was many Disney tweets that stated something to the effect of  ” Last day at Disney : ( “. A quick change to the mood values and everything fell in to place and looked much better. Analytically, this is a good thing based on the context in which it was said. being sad to leave somewhere verses being upset that the line for Space Mountain is too long are vastly different.

More Read

Should You Divorce Your Customer? CRM Analytics Can Tell You If It’s Time to Split
10 Ways to Gain Targeted Insights Into User Behavior
Some thoughts on mobile
Using Analytics to Stay on Top of the Regulatory Landscape
How We Are Heading Towards a Smart Planet with the Internet of Things [INFOGRAPHIC]

One of the biggest hurdles to analyzing social data is understanding the audience, the data source and the sentiment that is being expressed. This process will have to be somewhat manual until the “rules” for social data are defined and you can analyze the trends that you are seeing from your “data set”. Don’t forget that depending on the age of your audience, the slang and general language rules change and they will have to be constantly updated; when was the last time you heard a kid use the words “Gnarly”, “Rad”, or “Bogus”?

Social data analysis is the wave of the future as more and more consumers move to technology and cyberspace to express their opinions about everything from snack food to cars. BI Professionals who fail to expand their view into social data run the risk of being left behind.

Social Data is everywhere, be sure and check out this month’s “Blog-o-rama” at Smart Data Collective

 

TAGGED:social media analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Facebook Analyzes Big Data, Concludes World is Smaller

4 Min Read

Yellowfin’s Year in Review: Top 9 Business Intelligence developments of 2011

26 Min Read

Building a Text Analytics Command Center for Social & Private Data Analysis

6 Min Read

Does B2B Need Social? The Growing Importance of Social Media Analytics to B2B

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?