Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Turning Frameworks Into Strategies
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Turning Frameworks Into Strategies
Data Quality

Turning Frameworks Into Strategies

GwenThomas
GwenThomas
7 Min Read
SHARE

Just read a brilliant post by Dylan Jones called “A Framework is not a Strategy.” It was in response to a comman Data Quality Pro community member question: “we’re launching a data quality/ migration project, whic

Just read a brilliant post by Dylan Jones called “A Framework is not a Strategy.” It was in response to a comman Data Quality Pro community member question: “we’re launching a data quality/ migration project, which frameworks do you recommend?”

Dylan goes on to note that problems occur when program planners confuse the terms framework and strategy. He offers the following definitions:

Framework:

  1. a skeletal structure designed to support or enclose something.
  2. a frame or structure composed of parts fitted and joined together.

Strategy:

  1. A method or plan chosen to bring about a desired future, such as achievement of a goal or solution to a problem.
  2. The art and science of planning and marshaling resources for their most efficient and effective use. The term is derived from the Greek word for generalship or leading an army.

Dylan then notes something that I, too, have seen a lot of: program planners who “focus far too much on the ’skeleton’ at the expense of the ‘desired future.’”

More Read

To Our Data Perfectionists
Data Design Matters
5 Tips to Consider When Designing Supply Chain Key Performance Indicators
What Does Data Quality Technology Want?
Live from Strata

When DGI introduced the DGI Data Governance Framework over 7 years ago, our goal was to help people understand what components should be considered as they put together a program and infrastructure that could support the work needed to bring about a desired future. We felt that a new framework was needed because some components (stakeholders, decision rights, controls) were often overlooked.

We recognized that a strategy for Data Governance in support of Data Quality might look very different for one in support of Data Integration or Compliance. But all of these would involve the coordination of the same components.

Over the years,  I have heard from hundreds of people who have said that they’ve used our framework to develop their own strategies int their organizations. (Quite rewarding, I must say.) In 5 continents, it would seem, are organizations who are implementing formal Data Governance and/or Data Quality, and who wanted a framework to help them get organized, get started, and to clearly communicate complicated ideas.

At first, it was tempting to assume that every one of these hundreds of framework users was going to have a happy, productive program. But after a few dozen exchanges over the phone or at conferences, it got so I could tell (usually just a few minutes into the conversation) which ones were actually making a difference in their organizations. They were the ones who emphasized HOW components of their strategy, and not just the WHATs of their framework.

  • How they were identifying and engaging their program participants: Stakeholders, Stewards, DGO members, and authorities such as council members.
  • How they were bringing clarity and transparency to complicated data situations by focusing and framing stakeholder needs.
  • How they were helping to define data-related objectives and meaningful targets.
  • How they were identifying gaps in their data-related rule-making and filling those gaps so they could develop the rules (policies, standards, priorities, directives, mandates, agreements, and others) needed to specify what should be done or not done.
  • How they were providing alignment-level support to managers and architects charged with translating policy into enforceable controls and practices.
  • How they were helping to embed rules and controls into programs, processes, systems, lifecycles, and professional practices.
  • How they were providing support to managers and others involved with assigning accountabilities, enforcing compliance to rules and controls, identifying conflicts, and resolving conflicts.
  • How they were helping define approaches and metrics for assessing results, through monitoring, assessments, profiling, auditing, attestations, and other activities.
  • How they were helping drive action in systems affected by inertia, lethargy, and blockages.
  • How they were providing ongoing Stakeholder Care in the form of communications, access to peers and participants, recording of data-related decision rights and other governance decisions, and education/support.

Unfortunately, some conversations only focused on WHAT needed to be in place, as if their organizations would magically achieve the value they were looking for merely by having a program equipped with a mission, focus, value proposition, participants, processes, decision rights, rules, accountabilities, and controls. 

To these people, I would try to explain that having such a framework in place is no more useful than merely erecting the metal framework of a high-rise building. Both are there to support the rest of it! In the case of a high-rise, the rest of the building needs to be layered onto the framework, so that people can get into, reside in, work in, and leave the completed space.

In the data world, it’s the job of Business + EIM + IT to build out and maintain the structures in which our data lives and works. Data Governance helps these blended teams to agree on the rules they must all follow (”Big G” Governance) and then embed and enforce and monitor the rules (”little g” governance) and – when needed – address and align conflicts (alignment-level governance).

The contents of a Data Governance strategy will depend upon where Biz+EIM+IT need help! The idea of a Data Governance (or quality, or migration, or MDM…) framework is to standardize thinking about the components involved in delivering Big G, little g, and alignment-level governance activities.

If you want to join the ranks of successful programs, remember that defining and building out a framework is just the first step. You need to keep layering on strategy, plans, and deliverables unless you want all your participants holding onto wind-swept girders as they work.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Why isn’t our data quality worse?

4 Min Read
predictive analytics retail
Business RulesData ManagementData MiningData QualityData VisualizationData WarehousingPredictive Analytics

Data by the Book: You Don’t Know What You’ve Got Until It’s Gone

6 Min Read
Big Data Maturity
AnalyticsBest PracticesBig DataBusiness IntelligenceCloud ComputingData ManagementData QualityExclusiveIT

CIOs Still Face Challenges to Reaching Big Data Maturity

10 Min Read

The Big Question In Big Data Is…What’s The Question?

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?