Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Taking Control of Your CRM Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Taking Control of Your CRM Data
Data Quality

Taking Control of Your CRM Data

martindoyle
martindoyle
7 Min Read
SHARE

crm dataCRMs are supposed to be used to achieve better efficiency. By investing time in the CRM, sales teams should be able to identify leads, retain existing customers and successfully recruit new clients to the fold.

Contents
  • Not an Afterthought
  • Fixing a Broken CRM
  • The Way of the World

Your research and development team should be able to use the metrics from the CRM to drive next year’s products, and the marketing team should be able to feed this back into their campaigns next year.

crm dataCRMs are supposed to be used to achieve better efficiency. By investing time in the CRM, sales teams should be able to identify leads, retain existing customers and successfully recruit new clients to the fold.

Your research and development team should be able to use the metrics from the CRM to drive next year’s products, and the marketing team should be able to feed this back into their campaigns next year.

More Read

Data Quality: Cash Drain or Cash Gain?
Top 10 Root Causes of Data Quality Problems: Part 4
Is your data complete and accurate, but useless to your business?
How Big Data can Help Marketers Cater to an International Audience
“Big Data” Translates to Bigger Profits, But for Whom?

That’s great, in theory.

Sadly, many CRMs fail to perform well. No system could feasibly solve every problem in your business, but if the CRM is creaking under the weight of dirty data, it could actually be hindering progress.

Not an Afterthought

We’ve heard estimates of CRM project failure rates between 30 and 60 per cent. And when you consider that the cost of a CRM starts at hundreds of pounds per month, the potential for waste is enormous. That’s not counting the cost of implementing the CRM, including change to systems, processes and workflows.

After all of that cost and investment, it can be extremely disheartening to find that staff simply don’t trust their data.

The greatest success in data quality comes from good planning. Unfortunately, many businesses do not have the experience to plan effectively, or do not realise the havoc that dirty data can wreak. But if you’ve not yet embarked on your implementation, there are lots of practical steps you can take to ensure a good standard of data quality.

Our recommendations are threefold.

  1. Data preparation

Ensure the data you are putting into the CRM is clean, valid, deduplicated and fit for purpose. Putting dirty data into a brand new CRM is like forcing a square peg into a round hole. The two just don’t fit, and it isn’t worth trying to force them.

Good preparation is critical if you are to inform other parts of the business. You cannot create meaningful or reliable reports, or formulate accurate intelligence, if your data is not cleansed, filtered and structured correctly.

  1. Finding patterns

Look at systematic failures and find ways to improve processes prior to CRM roll-out. You may find that data capture methods are broken; you may discover a flaw in another application. This can help you weed out problems that are spawning new dirty data, adding to the problem you’ve got.

  1. Using self-service tools

By adopting data quality tools at an early stage, you can use self-service methods to prepare your own data, improving productivity as the implementation progresses.

Fixing a Broken CRM

If your CRM is broken now, and your data is decaying, things are only ever going to get worse.

Think of your dirty data like a bad debt. You’re going to need to invest in the quality of your data; repay the interest you owe. The longer the data is neglected, the more you will owe, and the more the interest will be compounded. In a few short years, your data debt could be so great that you’re left bankrupt of any meaningful information.

Often, well-meaning advancements in data management can cause more problems than they solve. For example, we might import data from another system to try to replenish our faltering CRM. But if that data isn’t properly prepared, you could end up with invalid entries that can’t be opened or saved, or cause the system to crash. If you continually leave bad data at rest in the database, you will reach a stage where no single record can be relied upon.

If your CRM is not fuelled with good quality data, you must:

  • Fix the data flowing in so that it’s fit for purpose
  • Invest in the stagnant data that is already rotting within

Neither of these things need be tedious; neither need be a wholly manual process. Data quality software can help you to polish the rough diamonds in your database, resulting in data that is current and fit for purpose.

Proper data management means finding gaps in your data, eradicating invalid data, and removing data that is duplicated or out of date. This focus on data quality must be broad enough to encompass the whole organisation, yet fine-tuned enough to pick up phonetic matches of someone’s surname. Data quality software can compare millions of records each minute to achieve this.

The Way of the World

The ultimate goal for many companies is the single customer view, a state where every customer is represented by one comprehensive database entry. Without a mature and managed approach to data, the single customer view will always be pure fantasy.

If you don’t clean up your CRM now, what will happen?

  • Integrations between systems will fail
  • Staff will become frustrated and disillusioned
  • Customers will lose contact and drift to competitors
  • Waste will build and build
  • The data dream you had when the CRM was first implemented will be nothing more than a memory

Respected think tank Gartner says that the market for data quality tools is growing. It predicts that businesses will spend $2 billion in 2017. The pursuit of pure, usable, efficient data is a goal shared by businesses globally, and it’s a goal we must all realise if we are to compete effectively in the years to come.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai and satelite technology
How Machine Learning Improves Satellite Object Tracking
Exclusive Machine Learning
Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Are You A Data Whisperer?

4 Min Read

A New Economy of Data

3 Min Read

Data Management and the Navy: The Navy Virtualizes

3 Min Read

Lemonade Stand Data Quality

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?