By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    customer experience analytics
    Using Data Analysis to Improve and Verify the Customer Experience and Bad Reviews
    6 Min Read
    data analytics and CRO
    Data Analytics is Crucial for Website CRO
    9 Min Read
    analytics in digital marketing
    The Importance of Analytics in Digital Marketing
    8 Min Read
    benefits of investing in employee data
    6 Ways to Use Data to Improve Employee Productivity
    8 Min Read
    Jira and zendesk usage
    Jira Service Management vs Zendesk: What Are the Differences?
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: On Text Analytics vs Machine Translation
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > On Text Analytics vs Machine Translation
Data MiningData QualityData VisualizationSentiment AnalyticsText Analytics

On Text Analytics vs Machine Translation

Ken Hu
Last updated: 2012/03/15 at 9:00 AM
Ken Hu
4 Min Read
SHARE

 

I’ve made an interesting observation recently while talking to people about Thinkudo Enlighten. It regards the misunderstanding between Text Analytics and Machine (automated) Translation. More than once people’ve asked “How did you do the Chinese translation?” when I mentioned that Enlighten handles Sentiment Analysis in Chinese. So in this post, I’d like clarify the difference between them.

Each to Their Own

 

I’ve made an interesting observation recently while talking to people about Thinkudo Enlighten. It regards the misunderstanding between Text Analytics and Machine (automated) Translation. More than once people’ve asked “How did you do the Chinese translation?” when I mentioned that Enlighten handles Sentiment Analysis in Chinese. So in this post, I’d like clarify the difference between them.

Each to Their Own

First and foremost, Text Analytics and Machine Translation both fall under the field of Natural Langauge Processing (NLP). Whether or not Machine Translation should be a substudy of Text Analytics, I will leave it to the readers within academia to discuss. Personally, I would claim that Text Analytics covers topics which extract and normalize text into measurable data. These topics include topic extraction, word-cloud formation, text classification, and, of course, sentiment analysis. The normalized data can then be fed into other systems for analysis, visualization, and more.

Machine Translation, on the other hand, is a language-specific application of NLP techniques for a very human need. Instead of extracting information from the text, it transforms the text into another form. Granted, Machine Translation might utilize similar techniques as Text Analysis, for instance term-correlation, to achieve its goal. However, the problems they solve come from two separate directions.

Misunderstanding

The misunderstanding might have occured because most of the text analytics studies and results are geared toward the English language. This may lead to misinterpretation that English text is a requirement for Text Analytics problems. However, that is just not true. In fact, many of the theories and models proposed by English Text Analytics are applicable to other languages given modifications. To do so, domain knowledge of the targeted language is necessary to embed the grammar rules and text behaviors into the language model. Just as the n-gram study I’ve shared in my post on Chinese segmentation, with the appropriate preprocesing, the underlying statistical models can still be overserved and utilized for non-English languages. To us, most of the headaches are indeed within the text preprocessing, which may include segmentation, homograph, encoding, and other challenges.

 

Outlier 6z3qq 5651 Correlation

See the full gallery on Posterous

 

Images extracted from Cross Validated

The two fields are solving foundamentally different problems, with Machine Translation having more direct and human-applicable use cases than Text Analytics. Going forward, they both have irreplacable values in understanding human communication and expression. However, we should not confuse them or combine them without understanding the implications. If you are interested in finding out how their fusion can go wrong, my previous post covers that topic.

 

Permalink | Leave a comment  »

TAGGED: text analytics
Ken Hu March 15, 2012 March 15, 2012
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data protection regulation
Benefits of Data Management Regulations for Consumers & Businesses
Data Management
big data PPM software
6 Benefits of Data-Driven Project Portfolio Management (PPM) Software
Software
smart data for entrepreneurs
The Scoop on Smart Data for Up-and-Coming Entrepreneurs
Big Data
customer experience analytics
Using Data Analysis to Improve and Verify the Customer Experience and Bad Reviews
Analytics

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

text analytics
Text Analytics

Seven Benefits of Using AI to Perform Text Analysis

9 Min Read
corporate text analytics
Text Analytics

5 Applications for Corporate Text Analytics

7 Min Read
hands on text analytics tutorial
AnalyticsExclusiveText Analytics

An Introduction To Hands-On Text Analytics In Python

7 Min Read
airline loyalty
AnalyticsBig DataSocial DataSocial mediaSocial Media AnalyticsText Analytics

Predicting Airline Loyalty Churn – Cathay Pacific Marco Polo [Case Study]

15 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?