Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Redefining Loyalty Programs with Big Data and Hadoop
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > IT > Cloud Computing > Redefining Loyalty Programs with Big Data and Hadoop
AnalyticsBig DataBusiness IntelligenceCloud ComputingData MiningData QualityHadoopHardwareITMapReduceMarketing AutomationPredictive AnalyticsSentiment AnalyticsSocial DataSocial Media AnalyticsSoftwareSQLUnstructured DataWeb Analytics

Redefining Loyalty Programs with Big Data and Hadoop

Davemendle
Davemendle
7 Min Read
SHARE

Building Real Customer Relationships from Reward-Based Flings

A loyalty program should not be about points, rewards, or status. While these perks may attract consumers, they don’t foster loyalty. The focus of these programs should be to collect useful data that can be used to build relationships that benefit both the consumer and the brand.

Building Real Customer Relationships from Reward-Based Flings

A loyalty program should not be about points, rewards, or status. While these perks may attract consumers, they don’t foster loyalty. The focus of these programs should be to collect useful data that can be used to build relationships that benefit both the consumer and the brand.

More Read

Updated List of Datasets & Video Lectures
Using AI to Optimize Cybersecurity Apps in the Remote Working Era
Pizza Delivery Businesses Turn to Big Data Analytics for Record Growth
Gaming the Forecast
Five Steps to Data Integrity for Job Candidates

“Useful” is the key here—because consumers don’t really care about keeping a business’ data clean and relevant. It’s no secret that everyone has, at one point or another, probably fibbed about their age on a loyalty sign-up form. Or opted not to answer survey questions, provided incorrect data on purpose or mistakenly, or given their never-checked, spam-dump email address as contact information. Any business that trusts consumer-provided data implicitly is a business that’s making decisions based on what is essentially random information.

Consider this: U.S. consumers are enrolled in an average of 10.9 loyalty programs according to the 2014 Bond Brand Loyalty Report, but a recent Nielsen survey found that 78% of consumers say they are not loyal to a particular brand.

Customers may be members of loyalty programs, but they are obviously not engaged with the brands. They enjoy the transactional benefits of loyalty programs—but if another brand offers them a better deal, well, don’t expect “loyalty” to be a factor in their purchasing decision. And why should it be? If a brand is competing only on price points, its so-called relationship with a consumer is really no more than a brief fling.

Big Data Provides the Differential

Marketers agree that highly targeted campaigns are most likely to result in conversions, retention, or other desired outcomes. To do this, you obviously need to have the data that allows you to segment the customer base, provide relevant calls to action and/or rewards, and deliver the services and products that the brand’s customers identify as important.

But that brings us back to the ever-present problem: Where does the trustworthy data come from if we can’t count on consumers to provide it? The answer: from observation of customer activities and preferences in tandem with external data sources. Advanced analytics can then piece together a very accurate profile of the customer—one that enables more precise segmentation.

There’s no such thing as too much data when it comes to this sort of analytics work. Every business analyst and data scientist agrees that expanding the data for any given model will typically produce dramatic improvements in analysis. And that data will obviously come in a wide variety of formats—structured, semi-structured, and unstructured, big and small, near and real-time, as well as historical.

Try to store it all in a traditional data warehouse, and you may wipe out all of the profits gained from segmentation. You will almost certainly have availability issues, and you will spend a lot of time waiting for IT to massage the data into a form that can be analyzed. That’s why many organizations have turned to Apache Hadoop to power a Big Data solution.

Hadoop is a massively scalable distributed storage and processing platform that enables Big Data applications for both operations and analytics. It is a key component of the next-generation data architecture, providing organizations with the ability to build agile new data-driven applications and store data at 1/10 to 1/50 the cost on a per-terabyte basis.

Hadoop enables enterprises to capture and store data from every touchpoint in an organization while eliminating the need for separate silos to transform, cleanse, analyze, and score data.

With Hadoop, a business can bring structured, unstructured, and semi-structured data sources together in one platform to perform deeper and richer analysis that can provide real 360-degree views of both transactions and interactions. Hadoop also supports a number of best-in-class data analysis tools that enable self-service data discovery, providing actionable insights and timely business intelligence.

Define and Reward Real Loyalty

Building a loyalty relationship with just 5% more customers leads to an increased average profit per customer of at least 25%, according to “The Loyalty Effect: The Hidden Force Behind Growth, Profits, and Lasting Value” by Frederick F. Reichheld. A BIA/Kelsey study showed that a repeat customer spends 67% more than a new one.

But loyalty programs don’t just drive repeat business; they can also reveal what type of loyalty the business wants to foster. Repeat business based on price point may or may not be a brand’s ideal customer depending on the brand’s positioning. Some brands may choose to reward influencers, while others focus on return business or spend. Once a brand has segmented its base, it can identify those customers that it wishes to cater to and develop effective strategies and differentiated experiences based on what Big Data reveals about their preferences and profiles.

Using this intelligence, companies can move forward with confidence to build a customer loyalty program tailored to benefit the business and its most valuable customers. Big Data and Hadoop are a game-changer in the loyalty space, creating a measurable win-win solution for all involved.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data and retirement
Big DataExclusive

How Big Data Could Spare Seniors From A Terrifying Retirement Crisis

6 Min Read

Kronos Supercharges Workforce Analytics with New Technology

5 Min Read
data science and data mining differences
Data Science

Deciphering The Seldom Discussed Differences Between Data Mining and Data Science

8 Min Read
secrets to boosting customer loyalty
AnalyticsExclusivePredictive Analytics

Predictive Analytics Reveals Secrets To Boosting Customer Loyalty

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?