By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Lookalike Audiences: How to Find and Engage Them Using Big Data
Share
Notification Show More
Latest News
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
ai for small business tax planning
Maximize Tax Deductions as a Business Owner with AI
Artificial Intelligence
ai in marketing with 3D rendering
Marketers Use AI to Take Advantage of 3D Rendering
Artificial Intelligence
How Big Data Is Transforming the Maritime Industry
How Big Data Is Transforming the Maritime Industry
Big Data
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > Lookalike Audiences: How to Find and Engage Them Using Big Data
Big DataData VisualizationExclusiveMarketing

Lookalike Audiences: How to Find and Engage Them Using Big Data

Josh Knauer
Last updated: 2015/11/02 at 9:00 AM
Josh Knauer
5 Min Read
SHARE

You know your target market better than anybody. You know their age range, gender, income level, education level and just about everything else there is to know. But even armed with such targeted knowledge, you may be missing pockets of potential customers – consumers that don’t fall 100% into your “target market”. These “lookalike audiences” offer untapped potential. While they may not share many identifying characteristics with your target audience, they actually behave, consume and spend in very similar patterns.

You know your target market better than anybody. You know their age range, gender, income level, education level and just about everything else there is to know. But even armed with such targeted knowledge, you may be missing pockets of potential customers – consumers that don’t fall 100% into your “target market”. These “lookalike audiences” offer untapped potential. While they may not share many identifying characteristics with your target audience, they actually behave, consume and spend in very similar patterns. And, like your target audience, they would likely be very interested in your products and services.

While the concept of “lookalike audiences” has been around for a while, it was Facebook who reignited the term for their online ads. Lookalike audiences is defined by Facebook as “a way to reach new people who are likely to be interested in your business because they’re similar to customers you care about.” Digital platforms, like Facebook and Google, employ clever algorithms that identify these mimicking audiences, and advertisers can execute against this information. These consumer profiles, though, are based only on first party data, which provides information based on purchase histories and recent searches. This process of identifying lookalike audiences barely skims the surface of who these audiences are and why they buy what they buy.

The standard “lookalike” language is fundamentally too narrow and simply not nuanced enough. Lookalike modeling based on high level demographic categories, like age, income and gender, showcase a very limited view on audience and consumer behavior. To think that all white, high-income females are likely to buy the same car model because they are high-income, white females is inaccurate. Historically, marketers trying to find a ‘similar audience’ often use a very coarse-grained aggregation method, involving things like high-level demographics and small sample groups to represent thousands of customers. All of that has changed in the Big Data era.

More Read

ai software development

Key Strategies to Develop AI Software Cost-Effectively

AI is Driving Huge Changes in Omnichannel Marketing
Maximize Tax Deductions as a Business Owner with AI
Marketers Use AI to Take Advantage of 3D Rendering
How Big Data Is Transforming the Maritime Industry

With access to more information from multiple data sources, you can now find those that “act alike, think alike and feel alike” with your target audience. By referencing several data sources, you can build a deeper understanding and discover patterns and trends among current customers and find other audiences that exhibit similar behaviors. This knowledge can be used to either grow your current market or cross over into new ones. Once a lookalike audience is identified, data can also be used to create a detailed profile of the market and craft appropriate online and offline advertising strategies.

There are now alternative and far smarter ways to approach marketing to lookalike audiences. For instance, based on customer surveys an oatmeal cereal brand has known for years that a particular mother of three buys their product for health reasons. Using new data sources and granular analysis, the company discovers that this target audience’s  main health concern is childhood obesity. They also find that consumers of certain video games share similar weight gain concerns. In this case, the brand might be wise to do some co-branding with a video game console or specific games.

It’s time to move away from finding audiences that simply “look alike” to audiences that “behave alike.” Businesses that re-evaluate their approach to consumer data and targeting can start supplementing broad message advertising with real-world precision targeting.

Josh Knauer is president and CEO of Rhiza, an online platform pioneering the way marketers and salespeople make Big Data actionable.

 

Josh Knauer November 2, 2015
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
ai for small business tax planning
Maximize Tax Deductions as a Business Owner with AI
Artificial Intelligence
ai in marketing with 3D rendering
Marketers Use AI to Take Advantage of 3D Rendering
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

ai software development
Artificial Intelligence

Key Strategies to Develop AI Software Cost-Effectively

10 Min Read
ai in omnichannel marketing
Artificial Intelligence

AI is Driving Huge Changes in Omnichannel Marketing

12 Min Read
ai for small business tax planning
Artificial Intelligence

Maximize Tax Deductions as a Business Owner with AI

9 Min Read
ai in marketing with 3D rendering
Artificial Intelligence

Marketers Use AI to Take Advantage of 3D Rendering

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?