By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: How Low Conversion Data Seriously Hinders Machine Learning
Share
Notification Show More
Latest News
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Collection > How Low Conversion Data Seriously Hinders Machine Learning
Big DataData CollectionData ManagementExclusiveMachine Learning

How Low Conversion Data Seriously Hinders Machine Learning

Sean Mallon
Last updated: 2019/10/30 at 3:12 PM
Sean Mallon
7 Min Read
machine learning
Shutterstock Licensed Photo - By metamorworks
SHARE

Machine learning is changing the future of marketing in many beneficial ways. The Digital Marketing Institute reports that 97% of decision makers believe it is the future of marketing.

Contents
What are the problems with using small conversion data sets to automate your marketing strategy?Machine Learning Marketing Algorithms Require Sufficient Data

There are a number of tactics that marketers can pursue to optimize campaigns with machine learning algorithms. However, some of these strategies are more limited then marketers would like to think.

Big data technology has introduced a number of solutions for the marketing profession. It is able to handle massive data sets, which can aid marketers in a number of ways. They can use conversion data sets to:

  • Automate the delivery of their advertisements based on the time of day that customers are most likely to convert
  • Use artificial intelligence tools that rely on machine learning to optimize content for different visitors
  • Pinpoint the demographics of customers that are most likely to convert and deliver ads to them appropriately
  • Understand the most common questions that customers raise during chats with support services and chatbots and have automated responses for those inquiries
  • Identify email headers and copy that boosts CTRs and conversions
  • Discover the pain points that are most effective for upselling existing customers

According to an expert we spoke with from ASO, machine learning can be very powerful with big data. However, there are some challenges they must overcome.

More Read

machine learning seo

7 Mistakes to Avoid When Using Machine Learning for SEO

Use this Strategic Approach to Maximize Your Data’s Value
Machine Learning is Invaluable for Mobile App Testing Automation
Top 8 Machine Learning Development Companies in 2022
Machine Learning Leads to Huge Breakthroughs in Trading

It is not nearly as useful with small data, which was the only form of data that used to be available to marketers. Our colleague Jyoti Prakash Maheswari discussed problems with small data sets on his article on Towards Data Science. The principles he addressed are as applicable to marketing as any other machine learning application.

For many years, marketers had to work with small data sets. They simply did not have the storage space and resources to collect lots of data on their customers. Even companies that could afford to store large amounts of data rarely had the resources to process it and come up with actionable insights.

These companies are not ready to give up on the concept of working with smaller data sets. This can be problematic when you are trying to develop a sophisticated marketing strategy that is predicated on advances in machine learning technology.

What are the problems with using small conversion data sets to automate your marketing strategy?

A number of digital marketing platforms are making it easier for customers to exploit the benefits of machine learning. They usually require advertisers to track their conversions in real-time or manually upload them later.

Propel media is one of the companies that is using machine learning to help advertisers get the highest ROI. Many advertisers have said that they noticed a significant increase in campaign performance after they started using the CPA Optimizer, which relies heavily on machine learning technology.

However, the people that are familiar with this technology have warned against trying to use it with small conversion data. One Propel Media advertiser said that you generally need at least 50 conversions to get any value from it. The quality of the ad targeting is a lot higher when you have over 100 conversions.

Machine learning algorithms can make some very useful observations from conversions. They can extrapolate existing conversion data to significantly improve campaign performance. The problem is that the quality of those extrapolations is highly correlated to the number of conversions that have been uploaded.

Most other advertising platforms have similar technology. Companies using their own internal machine learning platforms to automate and optimize marketing strategies will find the same thing.

Marketers will face a little bit of a challenge when they try using conversion data for their machine learning algorithms. They need a minimum level of conversion data points to be able to create an effective machine learning strategy. They are also going to unfortunately discover that the quality of conversion data is dependent on an exponential decay factor. This means that the incremental benefits of adding additional conversions continues to shrink as new data is imported.

What does this mean in practice? Marketers will probably find that the marginal benefit of adding the first conversion to their data set is going to be huge. The value of the second conversion is going to be significant, but not nearly as strong as the first. Marketers will probably need to add five or six conversion data points to double the quality of the data that they earned from the first conversion that they added to their database. In order to double the quality of the data again, they might need to add another 20 or 25 data points. They might need to add 100 to 150 data points to double the quality again.

This means that marketers might need a substantial amount of data to make meaningful insights. The number of conversions they need is going to vary, depending on the complexity of the process that they are trying to optimize or automate.

For example, marketers might only need data from 20 or 30 conversions to determine the best performing ads that they are using. The machine learning algorithm might be able to identify the best ads with a 95% confidence interval with this amount of data.

However, they are probably going to need a lot more data to determine the best performing demographics to target.  Marketers trying to use machine learning to segment or eliminate demographics might need at least a couple hundred conversions first.

Machine Learning Marketing Algorithms Require Sufficient Data

Machine learning is invaluable to marketing. However, marketers need plenty of data to develop quality algorithms. They should be prudent about determining the right data size and ensure enough conversion data is collected first.

TAGGED: conversion data, low conversion data, machine learning
Sean Mallon October 30, 2019
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
By Sean Mallon
Sean is a freelance writer and big data expert. He loves to write on big data, analytics and predictive analytics.

Follow us on Facebook

Latest News

data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

machine learning seo
Machine Learning

7 Mistakes to Avoid When Using Machine Learning for SEO

6 Min Read
analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
machine learning helps with the testing process for mobile app development
Machine Learning

Machine Learning is Invaluable for Mobile App Testing Automation

9 Min Read
companies use AI to improve their testing strategies
Machine Learning

Top 8 Machine Learning Development Companies in 2022

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?