Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: ATM Replenishment: Forecasting and Optimization
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > ATM Replenishment: Forecasting and Optimization
Analytics

ATM Replenishment: Forecasting and Optimization

mvgilliland
mvgilliland
4 Min Read
SHARE

Why do people steal ATMs? Because that’s where the money is!!!

Contents
  • The ATM Replenishment Problem
  • Forecasting + Optimization

Why do people steal ATMs? Because that’s where the money is!!!

While the old “smash-n-grab” remains a favorite modus operandi of would-be ATM thieves, the biggest brains on the planet typically aren’t engaged in such endeavors (see Thieves Steal Empty ATM, Chain Breaks Dragging Stolen ATM, An A for Effort).

And of course, as we learned in Breaking Bad, successfully stealing an ATM (but then insulting your crime partner), can have unfortunate mind-numbing consequences.

More Read

Image
3 Ways to Become a Data Scientist
3 Big Data Myths for Enterprises
It Takes Courage to Compete on Analytics
20 Years of BI
7 Tips for Using Data Analytics to Inform Revenue Operations

The ATM Replenishment Problem

Suppose you operate hundreds of ATMs, processing millions of customer transactions a month. You want to keep your customers happy (no out-of-cash or other down time situations), yet minimize the cost of restocking the machines.

It turns out that managing ATMs is even more difficult than stealing one, and this was the challenge faced by DBS Bank in Singapore.  With a network of 1100 ATMs, there is an ever-present threat of inconveniencing customers any time an ATM runs out of cash, or is otherwise out of service. Replenishment trips are costly (can you imagine the gas mileage on those armored trucks, even with oil under $50/barrel?). And when you reload an ATM that isn’t running low on cash, you lose in two ways (wasting resources on an unnecessary trip, and temporarily making the ATM unavailable to customers while being reloaded.)

Fortunately there are bigger brains than the criminals thinking about the ATM replenishment problem. With the help of my colleagues from SAS Advanced Analytics R&D, DBS solved their problem and received top honors from the Singapore government for Most Innovative Use of Infocomm Technology. (See this write-up from Analytics magazine.)

Forecasting + Optimization

ATM replenishment is a perfect example of combining two areas of advanced analytics, forecasting and optimization. For DBS Bank, the first step was to understand withdrawal activity. Withdrawal rate is impacted by many factors, such as location, day of week, day of month, and time of day, and can be dramatically impacted by holidays or other special events.

Once you have a reasonably reliable forecast of customer activity at each ATM location, the next step (which helped DBS win the honors) is to convert the forecast into a daily execution plan for optimal reloading at just the right time. Since implementing the solution, DBS has been able to reduce cash-outs by 90%, reduce the number of customers impacted by the reloading process by 350,000 versus prior year, reduce the amount of returned cash (that was leftover in the ATM when it was reloaded) by 30%, and reduce the number of costly replenishment trips by 10%!

There are plenty of applications of forecasting + optimization outside ATM replenishment. For example, any company operating multiple production or distribution sites (or considering opening new ones) could benefit from a similar approach. First, get a good understanding of the timing and geographical location of customer demand. Then, optimize the placement of facilities or production lines. Revenue management, used by airlines and hotels to dynamically adjust pricing, is another example.

TAGGED:forecastingoptimization
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News
edge networks in manufacturing
Edge Infrastructure Strategies for Data-Driven Manufacturers
Big Data Exclusive
data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

See the Future with Your CRM

5 Min Read

Black Swans Causing a Rethink on Global Supply Chains?

4 Min Read
Predictive Analytics
AnalyticsPredictive Analytics

5 Applications of Predictive Analytics

5 Min Read

Forecasting Olympic Medals

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?