By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Don’t Fine Tune Your Forecast!
Share
Notification Show More
Latest News
ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Don’t Fine Tune Your Forecast!
Big Data

Don’t Fine Tune Your Forecast!

mvgilliland
Last updated: 2015/03/06 at 7:40 PM
mvgilliland
5 Min Read
SHARE

Does your forecast look like a radio? No? Then don’t treat it like one.

Contents
Two Things Can Happen — And One of Them is BadCan’t Small Adjustments Make a Big Improvement in Accuracy?

Image of RadioA radio’s tuning knob serves a valid purpose. It lets you make fine adjustments, improving reception of the incoming signal, resulting in a clearer and more enjoyable listening experience.

Does your forecast look like a radio? No? Then don’t treat it like one.

Image of RadioA radio’s tuning knob serves a valid purpose. It lets you make fine adjustments, improving reception of the incoming signal, resulting in a clearer and more enjoyable listening experience.

More Read

Predictive Analytics

5 Applications of Predictive Analytics

ATM Replenishment: Forecasting and Optimization
Alfred Hitchcock and a Classic Forecasting Scam
Gaming the Forecast
The “Avoidability” of Forecast Error [PART 2]

But just because you can make fine adjustments to your forecast, doesn’t mean you should. In fact, you shouldn’t.

Two Things Can Happen — And One of Them is Bad

Famed college football coach Woody Hayes (fired unceremoniously in 1978 for punching an opposing player) was know for powerful teams that ran the ball, eschewing the forward pass. Of the latter, he is credited with saying “When you pass the ball three things can happen, and two of them are bad.” [For those unfamiliar with American football, the good thing is a pass completion, and the bad things are an incompletion or an interception by the opposing team.]

Whenever you adjust a forecast two things can happen — you can improve the accuracy of the forecast, or make it worse.

Obviously, if you make the adjustment in the wrong direction (e.g., lowering the forecast when actuals turn out to be higher), a bad thing has happened — you’ve made the forecast worse. But you can also make overly aggressive adjustments in the right direction and overshoot, making the forecast worse. (For example, initial forecast of 100, adjusted forecast of 110, actual turns out to be 104.)

When you make just a small adjustment, there is little chance of overshooting. So as long as you are directionally correct, you have improved the forecast. But even if we assume every small adjustment is directionally correct, is that reason enough to spend time making small adjustments?

No. And here’s why not:

First recognize that “small adjustment” means small as a percentage of the original forecast. So changing a forecast from 100 to 101 is a “small” adjustment, just 1%. Likewise, changing 1,256,315 to 1,250,000 would be considered a small adjustment (0.5%) even though the change is over 6300 units.

Another way to characterize adjustments is their relevance — whether they are significant enough to cause changes in decisions and plans.

On this criterion, small adjustments are mostly irrelevant. An organization is probably not going to grind to a halt, scuttle existing plans, and suddenly change direction just because of a 1% adjustment in a forecast.

[Note that even “large” forecast adjustments may be irrelevant, when they don’t require any change in plans. This could happen for very low value items, such as 1/4″ galvanized washers sold at a hardware store. Such items are usually managed via simple replenishment rules, like a two-bin inventory control system. Unless the forecast change is so large that current bin sizes are deemed inappropriate, no action will be taken.]

Can’t Small Adjustments Make a Big Improvement in Accuracy?

It’s true that even a small adjustment can make a big improvement in forecast accuracy. Changing the forecast from 100 to 101, when actuals turn out to be 102, means you cut the error in half! (On the other hand, if actuals turned out to be 200, then you only reduced forecast error by 1%.)

But the purpose of forecasting is to help managers make better decisions, devise better plans, and run a more effective and profitable organization. Improved forecast accuracy, in itself, has no value unless it results in improved organizational performance.

So if a small forecast adjustment does not change any of the behavior (or resulting outcomes) of the organization — why bother??? Making small adjustments takes effort and resources, but is simply a waste of time.

TAGGED: forecasting
mvgilliland March 6, 2015
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Predictive Analytics
AnalyticsPredictive Analytics

5 Applications of Predictive Analytics

5 Min Read

ATM Replenishment: Forecasting and Optimization

4 Min Read
Image
Predictive Analytics

Alfred Hitchcock and a Classic Forecasting Scam

5 Min Read

Gaming the Forecast

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?