Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Taking Assumptions With A Grain Of Salt
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Taking Assumptions With A Grain Of Salt
Data MiningPredictive Analytics

Taking Assumptions With A Grain Of Salt

Editor SDC
Editor SDC
4 Min Read
SHARE

Occasionally, I come across descriptions of clustering or modeling techniques which include mention of “assumptions” being made by the algorithm. The “assumption” of normal errors from the linear model in least-squares regression is a good example. The “assumption” of Gaussian-distributed classes in discriminant analysis is another. I imagine that such assertions must leave novices with some questions and hesitation. What happens if these assumptions are not met? Can techniques ever be used if their assumptions are not tested and met? How badly can the assumption be broken before things go horribly wrong? It is important to understand the implications of these assumptions, and how they affect analysis.

In fact, the assumptions being made are made by the theorist who designed the algorithm, not the algorithm itself. Most often, such assumptions are necessary for some proof of optimality to hold. Considering myself the practical sort, I do not worry too much about these assumptions. What matters to me and my clients is how well the model works in practice (which can be assessed via test data), not how well its assumptions are met. Generally, such assumptions are rarely, if…


Occasionally, I come across descriptions of clustering or modeling techniques which include mention of “assumptions” being made by the algorithm. The “assumption” of normal errors from the linear model in least-squares regression is a good example. The “assumption” of Gaussian-distributed classes in discriminant analysis is another. I imagine that such assertions must leave novices with some questions and hesitation. What happens if these assumptions are not met? Can techniques ever be used if their assumptions are not tested and met? How badly can the assumption be broken before things go horribly wrong? It is important to understand the implications of these assumptions, and how they affect analysis.

In fact, the assumptions being made are made by the theorist who designed the algorithm, not the algorithm itself. Most often, such assumptions are necessary for some proof of optimality to hold. Considering myself the practical sort, I do not worry too much about these assumptions. What matters to me and my clients is how well the model works in practice (which can be assessed via test data), not how well its assumptions are met. Generally, such assumptions are rarely, if ever, strictly met in practice, and most of these algorithms do reasonably well even under such circumstances. A particular modeling algorithm may well be the best one available, despite not having its assumptions met.

More Read

Image
Data Science: What Companies Need to Know
Here’s How to Use Decision Management to Improve Cross-Channel Experience
DIALOG IBM and ILOG – the strategic perspective
Electronic Vision
Researchers at the University of Edinburgh in Scotland…

My advice is to be aware of these assumptions to better understand the behavior of the algorithms one is using. Evaluate the performance of a specific modeling technique, not by looking back to its assumptions, but by looking forward to expected behavior, as indicated by rigorous out-of-sample and out-of-time testing.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Big DataData MiningSocial Data

Big Data: The Retailer’s Tool for Keeping Consumers On-Side and Happy

5 Min Read

Interview: Jon Peck SPSS

12 Min Read
decision management tool
AnalyticsBest PracticesBusiness IntelligenceCRMData ManagementDecision ManagementInside CompaniesMarket ResearchMarketingPredictive AnalyticsSoftware

First Look: FICO Decision Optimizer

6 Min Read

Data Mining Methodologies

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?