Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Guiding Principles for Data Enrichment
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Guiding Principles for Data Enrichment
Best PracticesData ManagementData Warehousing

Guiding Principles for Data Enrichment

boblambert12
boblambert12
5 Min Read
Image
SHARE

ImageThe data integration process is traditionally thought of in three steps: extract, transform, and load (ETL). Putting aside the often-discussed order of their execution, “extract” is pulling data out of a source system, “transform” means validating the source data and converting it to the desired standard (e.g. yards to meters), and load means storing the data at the destination.

ImageThe data integration process is traditionally thought of in three steps: extract, transform, and load (ETL). Putting aside the often-discussed order of their execution, “extract” is pulling data out of a source system, “transform” means validating the source data and converting it to the desired standard (e.g. yards to meters), and load means storing the data at the destination.

An additional step, data “enrichment”, has recently emerged, offering significant improvement in business value of integrated data. Applying it effectively requires a foundation of sound data management practices. 

Data integrators traditionally bring data from source to target unchanged. It’s as if ETL developers were movers who prided themselves on putting your furniture in the new place unbroken. Businesses today are asking the movers to repair and improve the furniture before landing it in the new house.

More Read

data lake vs data warehouse
Differentiating Between Data Lakes and Data Warehouses
Enhance Customer Retention and Acquisition Strategies with Insurance Data Analysis
Survey Says Only 7% of European Companies Rate Big Data as Relevant [VIDEO]
7 Consequences of a Data Intrusion: Insights From Asiaciti Trust & MGM International
Understanding the Different Forms of Data Virtualization

The most obvious enrichment example is address correction. When you enter your address on some US e-commerce sites, the site corrects it by standardizing street, city, and state fields, and adding the last four digits of the zip code. ETL vendors tout many possibilities beyond address correction. One lists these types of information that can be added, or “augmented“, to a demographics database, presumably from databases that vendor can provide:

  • “Geographic: such as post code, county name, longitude and latitude, and political district
  • “Behavioral: including purchases, credit risk and preferred communication channels
  • “Demographic: such as income, marital status, education, age and number of children
  • “Psychographic: ranging from hobbies and interests to political affiliation
  • “Census: household and community data”

Enrichment isn’t limited to demographics. Data quality tools like this one allow definition of rules that integrate into the ETL stream for any data source:

  • Matching incoming records with existing data, like identifying to which insured member a claim applies
  • Correcting invalid data based on other data in the record, like correcting an out-of-bounds hand-entered measurement based on an independent automated data feed
  • Interpolating missing values based on other available data. So while loading a pregnancy related claim the system might fill in a missing value for gender.

As you can imagine, changing source data runs counter to most integrators’ instincts. And yes, it’s risky. Operations that automatically match, correct, or interpolate data values operate with some “confidence” level, meaning that sometimes they are wrong. I worked in one customer service organization whose matching routines processed tens of millions of customer records with 95% confidence. That meant that hundreds of thousands of matches may have been incorrect — not necessarily an issue for the particular application involved, but something for those implementing enrichment to consider.

Given those risks, I suggest these three guiding principles for organizations adding enrichment to their data integration streams:

  • The business should drive and manage enrichment definition: Data stewards who understand the incoming data and the intended use must be the key drivers of what data is enriched, how it is done, and test of the enrichment outcomes.
  • Enriched data must be identifiable and audit-able in the target database: Any integration target database should feature complete lineage metadata: where is this data element from, when was it loaded, and what happened to it along the way. This is even more true for data added by interpolating from, augmenting, matching, or correcting source data. Analysts must know which data came directly from the source, which was generated, and the confidence level of the latter.
  • Data replaced by enrichment must be available alongside the enriched data: Enrichment processes must store modified or added data in such a way that analysts have access to the “raw” source data. Analysts should be able to independently test enrichment processes and suggest improvements if needed. If, for whatever reason, enrichment doesn’t meet specific analysis needs, then they should be able to fall back to the original source data.

By following these three guiding principles, organizations can ensure that they deploy enrichment processes that enhance business value of integrated data while minimizing risk and maximizing flexibility as requirements evolve.  

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

mobile technology
Big DataCloud ComputingCulture/LeadershipData ManagementHardwareITPolicy and Governance

Digital Heirlooms: What Lasts in a Digital Age?

9 Min Read
data optimization solutions
Best PracticesBig DataData ManagementExclusive

The Significance Of Data Optimization Solutions For Modern Enterprises

6 Min Read

The Ideology Divide Between Intuition and Fact-based Decisions

3 Min Read

Analyst: “Every cloud needs SOA behind it:”

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?