Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: BI Business Value – Timeliness or Consistency, Part 2
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > BI Business Value – Timeliness or Consistency, Part 2
Business IntelligenceData Warehousing

BI Business Value – Timeliness or Consistency, Part 2

Barry Devlin
Barry Devlin
4 Min Read
SHARE

rolls-royce-logo-302.jpgHaving looked at timeliness in Part 1, let’s turn our attention to consistency.

rolls-royce-logo-302.jpgHaving looked at timeliness in Part 1, let’s turn our attention to consistency.

Early proponents of data warehousing, including myself, majored on the role of the Enterprise Data Warehouse (EDW) as a repository of a consistent, integrated and historical view of the business.  Leaving aside the historical aspect for now, the desire for consistency and integration can be traced directly to one of the main concerns of decision makers in the 1980s.  There existed a growing proliferation of applications–operational systems–that were responsible for running the business.  These systems were being introduced in an ad hoc manner throughout the business, often on different platforms and addressing different but overlapping aspects of the same process.  

In a bank, for example, a mainframe-based application running against an IMS database handled checking accounts.  A new relational database system running on a minicomputer was introduced to handle savings accounts.  The difficulty for decision makers was to understand the combined account position for individual customers.  The need, stated in a nutshell, was for a “single version of the truth”.

More Read

A powerful computing tool that allows scientists to extract…
The “decline effect,” random variation, and evidence-based marketing
How to Make Your Department More Data-Friendly
Testing to Sell: Meta’s Crusade for Proof in Web Design
Reaching The Social Customer: New Tools, New Strategies – Webinar from Social Media Today

This divergence of sources, combined with the often poor data quality in individual operational sources, as well as the need for a single truth, led EDW designers and developers to focus almost maniacally on how to achieve consistency and integration of information in the warehouse.  Enterprise modeling, ETL tools and intricate, often lengthy projects were all used in service of this goal.

Today, we need to pose two important questions.  First, is there really a single version of the truth that can be created and stored in the EDW?  Second, do we have the time and the money to create it?

On the first question, I feel that we have become blinded by our unswerving belief in a universal truth.  Yes, there do exist “truths” in the business that need to be universally agreed.  The quarterly figures announced to the stock markets absolutely need to be internally consistent and well-integrated.  The underlying numbers that lead to these results are similarly constrained.  But, it is equally clear that some numbers can exist as best estimates, close approximations or even “swag” (some wild-assed guess!).  As a culture, we have become obsessed with the second or third decimal point on many numbers.  How many times have you heard election polls being reported with candidates separated by half a percentage point, while the 2% margin of error on the poll is hidden in a footnote?

Answering the first question as we just have leads easily to an answer to the second.  We need to divert resources from seeking complete consistency to achieving consistency where it matters and timeliness where that is important.  And, more, getting the best return on investment in both areas–timelines and consistency.   The real business value in some data lies in its early availability to decision makers; the value in other data resides in its consistency and integrity.

Distinguishing between the two is the key to success.

Join me on my upcoming webinar, “Business Intelligence: the Quicker, the Better”, on October 25th for further insights into this important issue.

And for my European readers, allow me to remind you that Larissa Moss is presenting a two-day seminar in Rome on October 20-21st, entitled “Agile Approach to Data Warehousing & Business Intelligence” which will also show how to address this dilemma.

TAGGED:BI Issues
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive
data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Traditional BI in Babushka Doll

5 Min Read
business intelligence
Business Intelligence

The Role of Business Intelligence in The Modern Commercial Organization

6 Min Read

Being a Trusted BI Advisor

2 Min Read

Top-Down Business Intelligence

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?