Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Topology of Search Concepts
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > A Topology of Search Concepts
Data Mining

A Topology of Search Concepts

Daniel Tunkelang
Daniel Tunkelang
3 Min Read
SHARE

Vegard Sandvold has an interesting post entitled “Help Me Design a Topology of Search Concepts” in which he visualizes assorted search approaches in a two-dimensional space, the two dimensions being the degree of information accessibility and whether the approach is algorithm-powered or user-powered.

His four quadrants:

  • Low information accessibility + algorithm-powered = simple search (e.g., keyword search)
  • Low information accessibility + user-powered = superficial search (e.g., collaborative filtering)
  • High information accessibility + algorithm-powered = ingenious search (e.g., question answering)
  • High information accessibility + user-powered = diligent search (e.g., faceted search)

I’m not sure how I feel about the quadrant names (though I like how my employer and I are champions of diligence!), but I do like this attempt to lay out different approaches to supporting information seeking, and I like his choice of axes…

More Read

Image
The Big Data Uprising: It’s Not About Big Or Data
The Promise and Challenge of Using Big Data to Address World Problems
Game Changers
2012: The Year of Big Data in American Politics
What is R?

Vegard Sandvold has an interesting post entitled “Help Me Design a Topology of Search Concepts” in which he visualizes assorted search approaches in a two-dimensional space, the two dimensions being the degree of information accessibility and whether the approach is algorithm-powered or user-powered.

His four quadrants:

  • Low information accessibility + algorithm-powered = simple search (e.g., keyword search)
  • Low information accessibility + user-powered = superficial search (e.g., collaborative filtering)
  • High information accessibility + algorithm-powered = ingenious search (e.g., question answering)
  • High information accessibility + user-powered = diligent search (e.g., faceted search)

I’m not sure how I feel about the quadrant names (though I like how my employer and I are champions of diligence!), but I do like this attempt to lay out different approaches to supporting information seeking, and I like his choice of axes.

More importantly, I hope this analysis helps advance our ability as technologists to match solutions to information seeking problems. Many of us have an intuitive sense of how to do so, but I rarely see principled arguments–particularly from vendors who may be reluctant to forgo any use case that could translate into revenue.

Of course, it would be nice to quantify these axes, or at least to formalize them a bit more rigorously. For example, how do we measure the amount of user input into the process–particuarly for applications that may involve human input at both indexing and query time? Or how do we measure information accessibility in a corpus that might include junk (e.g., spam)?

Still, this is a nice start as a framework, and I’d be delighted to see it evolve into a tool that helps people make technology decisions.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The problem with the RDBMS (Part 3) – Let’s Get Real

11 Min Read

Decision management can improve warranty claims and customer experience

4 Min Read
Image
Big DataBusiness IntelligenceData ManagementData MiningData QualityData WarehousingITModeling

A Better Way to Model Data

5 Min Read

What About the Rest of Us?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?