By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Tips for the KDD challenge :)
Share
Notification Show More
Latest News
ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Tips for the KDD challenge :)
Business IntelligenceData Mining

Tips for the KDD challenge :)

TimManns
Last updated: 2009/03/30 at 10:52 PM
TimManns
5 Min Read
SHARE

I recently heard about the KDD challenge this year. Its a telco based challenge to build churn, cross-sell, and up-sell propensity models using the supplied train and test data.

For more info see;
http://www.kddcup-orange.com/index.php

I am not able to download the data at work (security / download limits), so I might have to try this at home. I haven’t even seen the data yet. I’m hoping its transactional cdr’s and not in some summarised form (which it sounds like it is).

I don’t have a lot of free time so I might not get around to submitting an entry, but if I do these are some of the data preparation steps and issues I’d consider;

More Read

ai in automotive industry

AI Is Changing the Automotive Industry Forever

SMEs Use AI-Driven Financial Software for Greater Efficiency
Key Strategies to Develop AI Software Cost-Effectively
AI is Driving Huge Changes in Omnichannel Marketing
Maximize Tax Deductions as a Business Owner with AI

– handle outliers
If the data is real-world then you can guarantee that some values will be at least a thousand times bigger than anything else. Log might not work, so try trimmed mean or frequency binning as a method to remove outliers.

– missing values
The KDD guide suggests that missing or undetermined values were converted into zero. Consider changing this. Many algorithms will treat zero very differently from a null. You might get better results by treating these zero’s as nulls.

– percentage comparisons
If a customer can make a voice or sms call…


I recently heard about the KDD challenge this year. Its a telco based challenge to build churn, cross-sell, and up-sell propensity models using the supplied train and test data.

For more info see;
http://www.kddcup-orange.com/index.php

I am not able to download the data at work (security / download limits), so I might have to try this at home. I haven’t even seen the data yet. I’m hoping its transactional cdr’s and not in some summarised form (which it sounds like it is).

I don’t have a lot of free time so I might not get around to submitting an entry, but if I do these are some of the data preparation steps and issues I’d consider;

– handle outliers
If the data is real-world then you can guarantee that some values will be at least a thousand times bigger than anything else. Log might not work, so try trimmed mean or frequency binning as a method to remove outliers.

– missing values
The KDD guide suggests that missing or undetermined values were converted into zero. Consider changing this. Many algorithms will treat zero very differently from a null. You might get better results by treating these zero’s as nulls.

– percentage comparisons
If a customer can make a voice or sms call, what’s the percentage between them? (eg 30% voice vs 70% sms calls). If only voice calls, then consider splitting by time of day or peak vs offpeak as percentages. The use of percentages helps remove differences of scale between high and low quantity customers. If telephony usage covers a number of days or weeks, then consider a similar metric that shows increased or decreased usage over time.

– social networking analysis
If the data is raw transactional cdr’s (call detail records) then give a lot of consideration do performing a basic social networking analysis. Even if all you can manage is to identify a circle of friends for each customer, then this may have a big impact upon identification of high churn individuals or up-sell opportunities.

– not all churn is equal
Rank customers by usage and scale the rank to a zero (low) to 1.0 score (high rank). No telco should still be treating every churn as a equal loss. Its not! The loss of a highly valuable customer (high rank) is worse than a low spend customer (low rank). Develop a model to handle this and argue your reasons for why treating all churn the same is a fool’s folly. This is difficult if you have no spend information or history of usage over multiple billing cycles.

Hope this helps

Good luck everyone!

Link to original post

TimManns March 30, 2009
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

ai in automotive industry
Artificial Intelligence

AI Is Changing the Automotive Industry Forever

5 Min Read
Artificial Intelligence

SMEs Use AI-Driven Financial Software for Greater Efficiency

10 Min Read
ai software development
Artificial Intelligence

Key Strategies to Develop AI Software Cost-Effectively

10 Min Read
ai in omnichannel marketing
Artificial Intelligence

AI is Driving Huge Changes in Omnichannel Marketing

12 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?