Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: What’s The Difference between Data Scientists and Rocket Scientists?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > What’s The Difference between Data Scientists and Rocket Scientists?
Analytics

What’s The Difference between Data Scientists and Rocket Scientists?

TalentAnalytics
TalentAnalytics
4 Min Read
SHARE

This post was written by Greta Roberts, CEO, Talent Analytics, Corp. on 18 July 2012. Comment below!

After attending several analytics conferences over the last month, I’m beginning to understand an important nuance about the community we call “analytics” worked by “analytics professionals” or “data scientists.”  It seems as if the defining boundary of our discipline is almost always that we data scientists apply ourselves to business, organizational, and market data.

This post was written by Greta Roberts, CEO, Talent Analytics, Corp. on 18 July 2012. Comment below!

After attending several analytics conferences over the last month, I’m beginning to understand an important nuance about the community we call “analytics” worked by “analytics professionals” or “data scientists.”  It seems as if the defining boundary of our discipline is almost always that we data scientists apply ourselves to business, organizational, and market data.

More Read

Why Business Intelligence Software Is Failing Business
4 things to think about while building a Modern Analytics Solution
How Wix Is Using Predictive Analytics To Deliver Top-Tier Websites
Never Stop Expecting More from Your Unstructured Data
Big Data Provides Invaluable Translation Services For Marketers

The important nuance?  Businesses, organizations, and markets all involve interactions between people.  Always.

Several other domains use very similar computational techniques to look at purely physical things – the hard sciences and engineering.  As an example, astrophysicists or metallurgists may use the same statistical programs as data scientists, but their world is very different.  Their data does not involve humans.  For example, the electrical lifespan of a battery doesn’t vary with human sentiments, though sometimes it may seem that way.

Since a data scientist’s work is typically in the service of learning about, bringing value to, and bringing change to an organization, we have to deal with people.  It’s not about the size of our datasets – compare your data to Computational Fluid Dynamics data someday – but it’s that we are looking at these sometimes fickle, non-linear, yet often-predictable critters called employees or buyers or sellers.

Finance, in particular, is famous for “physics envy,” leading to very mathematical, yet sometimes fatally flawed models of market and ultimately human behavior.  In the Analytics business, no matter how many physics Ph.D.’s we hire, our analytics professionals often only get one pass at the data – we can’t repeat experiments as if we are Edison looking for a light bulb filament.

Just because our ultimate subject matter (people) maybe influenced by Madonna one decade and Lady Gaga the next, does not make them impossible to model, analyze, and even predict.  And since only people do the work and the buying, this analysis is very valuable with even small correlations.

Maybe this seems obvious, but I think it can sometimes be easy to fall into thinking about the “market” or “transactions” or “attrition” or “performance” in a more mechanistic way that forgets about the involvement of people making a Data Scientist’s work far more complicated than predicting the airflow over a wing.

The above nuance feels like an important one, to learn and to pass along as it highlights the unique, powerful and human side of our work.  This concept may be lost in the seeming trivia of scanning social media text, but in fact the closer to humanity we are, the closer we are to being Data Scientists.

Originally published by International Institute for Analytics.

Greta Roberts is a Faculty Member of the IIA and CEO of Talent Analytics, Corp. Follow her on twitter @GretaRoberts.

TAGGED:big dataData Scientistpredictive analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

use of predictive analytics
AnalyticsExclusivePredictive Analytics

Predictive Analytics Advances Rewrite Rules On Corporate Conferences

5 Min Read

A Look at Today’s White House Big Data Event

3 Min Read
big data analytics for trading data
AnalyticsBig DataExclusive

How Online Stock Trading is Being Impacted by Big Data

4 Min Read
AI and big data guide
Big DataExclusive

Utilizing Big Data For The Lowest Possible Bounce Rate

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?