Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: What’s The Difference between Data Scientists and Rocket Scientists?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > What’s The Difference between Data Scientists and Rocket Scientists?
Analytics

What’s The Difference between Data Scientists and Rocket Scientists?

TalentAnalytics
TalentAnalytics
4 Min Read
SHARE

This post was written by Greta Roberts, CEO, Talent Analytics, Corp. on 18 July 2012. Comment below!

After attending several analytics conferences over the last month, I’m beginning to understand an important nuance about the community we call “analytics” worked by “analytics professionals” or “data scientists.”  It seems as if the defining boundary of our discipline is almost always that we data scientists apply ourselves to business, organizational, and market data.

This post was written by Greta Roberts, CEO, Talent Analytics, Corp. on 18 July 2012. Comment below!

After attending several analytics conferences over the last month, I’m beginning to understand an important nuance about the community we call “analytics” worked by “analytics professionals” or “data scientists.”  It seems as if the defining boundary of our discipline is almost always that we data scientists apply ourselves to business, organizational, and market data.

More Read

big data and SMEs
Big Data and the SME: Prepare to Succeed
Big Data + Intimate Stories = Big Impact
Leveraging AI-Driven Latent Semantic Indexing in Your Online Strategy
Death of Consumer Segmentation – Ridiculous!
Big Social Data Can Unlock the Power of Engaged Viewers

The important nuance?  Businesses, organizations, and markets all involve interactions between people.  Always.

Several other domains use very similar computational techniques to look at purely physical things – the hard sciences and engineering.  As an example, astrophysicists or metallurgists may use the same statistical programs as data scientists, but their world is very different.  Their data does not involve humans.  For example, the electrical lifespan of a battery doesn’t vary with human sentiments, though sometimes it may seem that way.

Since a data scientist’s work is typically in the service of learning about, bringing value to, and bringing change to an organization, we have to deal with people.  It’s not about the size of our datasets – compare your data to Computational Fluid Dynamics data someday – but it’s that we are looking at these sometimes fickle, non-linear, yet often-predictable critters called employees or buyers or sellers.

Finance, in particular, is famous for “physics envy,” leading to very mathematical, yet sometimes fatally flawed models of market and ultimately human behavior.  In the Analytics business, no matter how many physics Ph.D.’s we hire, our analytics professionals often only get one pass at the data – we can’t repeat experiments as if we are Edison looking for a light bulb filament.

Just because our ultimate subject matter (people) maybe influenced by Madonna one decade and Lady Gaga the next, does not make them impossible to model, analyze, and even predict.  And since only people do the work and the buying, this analysis is very valuable with even small correlations.

Maybe this seems obvious, but I think it can sometimes be easy to fall into thinking about the “market” or “transactions” or “attrition” or “performance” in a more mechanistic way that forgets about the involvement of people making a Data Scientist’s work far more complicated than predicting the airflow over a wing.

The above nuance feels like an important one, to learn and to pass along as it highlights the unique, powerful and human side of our work.  This concept may be lost in the seeming trivia of scanning social media text, but in fact the closer to humanity we are, the closer we are to being Data Scientists.

Originally published by International Institute for Analytics.

Greta Roberts is a Faculty Member of the IIA and CEO of Talent Analytics, Corp. Follow her on twitter @GretaRoberts.

TAGGED:big dataData Scientistpredictive analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

predictive analytics can help tax authorities
AnalyticsBig DataExclusivePredictive Analytics

Can Predictive Analytics Prevent Tax Evasion?

5 Min Read

Video: Eight Answers About Predictive Analytics

1 Min Read
customer data collection
AnalyticsBig DataBusiness IntelligenceCollaborative DataData ManagementData WarehousingDecision ManagementExclusiveNewsWeb Analytics

See Why Businesses Can’t Do Without Customer Data Collection

7 Min Read
niche data tactics for business success
Big Data

Niche Data Tactics to Take Your Business to the Next Level

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?