Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 5 Questions You Should Be Asking About Big Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > 5 Questions You Should Be Asking About Big Data
AnalyticsBig Data

5 Questions You Should Be Asking About Big Data

BrunoAziza
BrunoAziza
7 Min Read
Image
SHARE

ImageBig Data is a vague term so business user beware. You have to understand what big data can actually do and what are its limitations. As you map your strategy, it’s critical to ask the right questions to ensure you ultimately net useful information.

ImageBig Data is a vague term so business user beware. You have to understand what big data can actually do and what are its limitations. As you map your strategy, it’s critical to ask the right questions to ensure you ultimately net useful information.

Businesses are right to be concerned about being left behind as competitors and colleagues leverage big data to achieve a variety of business goals. But before being swept up in the wave, take a step back and consider these five questions to ensure you set on the right path:

1. What’s your problem?
This seems like an obvious question, but companies feeling pressured to become “data-driven,” may race ahead without first properly defining the problems (or opportunities) at hand. Are you a business analyst who can’t fit the data you require into Excel? Are you unable to access your company’s big data in the first place? Are you a chief information officer charged with reducing the wait time for query returns? Are you a non-technical user tired of waiting days or weeks for query results? Is your data structured or unstructured? All of the above?

More Read

big data disney
Big Data Meets Walt Disney’s Magical Approach
VC Investment Analytics on 20 Years of Investment Data
What Every CEO Needs to Know About IT
How Your Small Business Should be Taking Advantage of Big Data
Free as in Freebase

Of course, one of the problems you might face is budget, particularly at startups and small-to-medium-sized businesses. The price of data warehousing and proprietary hardware can be prohibitive. If affordability is an issue, map out a strategy based on software that runs on commodity hardware and does not require data warehousing.

2. What’s the price you pay for free (open source) software?
There’s been a lot of hoopla over Hadoop and, while it serves as a fantastic open source solution for some business needs, free doesn’t mean there’s no price to pay. Hadoop runs on commodity hardware and that requires an investment, as does the power and connectivity it requires.

The core Hadoop distribution is free and open source software, when obtained from a few key Hadoop vendors.  But some vendors have proprietary Hadoop distributions, and even the open source distributions have proprietary add-on management tools.  Unless you’re downloading your Hadoop components from the Apache Software Foundation, you’re on the road to the same software license and lock-in concerns you have with commercial.

And let’s not forget the salaries of the data scientists required for deployment and management. If you’ve got a big wallet for IT and the hardware to boot, Hadoop might be right for you. But not everything is “Hadoopable.”

This leads me to the next question.

3. Does size matter? (Your businesses’ size and the size of your data).
The conversation around Big Data has lingered largely around petabytes. However, most businesses use terabytes of data. When working in the terabyte range, the overhead of a big cluster of machines may not pay off. You might find that legacy solutions are unnecessarily super-sized for the needs of your business.

If you fall within the TB scale, you are within single server range. You can keep cost down and simplicity up by aiming for a single server solution. Just a short ten years ago, a single computer could only handle gigabytes of data but now commodity hardware can handle terabytes, opening up a range of options that were previously unavailable.

4. Where is your data?
If most of your data is on-premise, your strategy should be different than in situations where the majority is in the cloud. For example, if your data is sitting on the Amazon or Rackspace cloud, then running a big data solution within that framework makes sense because the data is easy to move within that environment. However, if most of your data resides on-premise and you’re considering running your big data queries in the cloud, think again. Big data is difficult to move around and keeping it synced when uploading to the cloud poses many challenges. Better to remain within the on-premise environment in such cases.

5. What is the distinction between the various technologies?
There are three types of technologies currently utilized for big data analytics: software database appliances, hardware database appliances, and distributed databases.

Software database appliances are deployed on commodity hardware, generally on a single computer so they are generally affordable and architected simply. Examples are relational databases such as SQL server or MySQL, as well SiSense’s ElastiCube technology.

Hardware database appliances are comprised of proprietary software bundled with proprietary (i.e. expensive) hardware. Proprietary hardware has more powerful specs than commodity hardware but can cost 50 times more.

Distributed databases refer to software that is deployed on a cluster of computers, allowing it to “parallelize” resource-intensive processing operations. This involves complex architecture.

Other technologies you may encounter, such as in-memory or OLAP cubes, are smaller scale technologies that do not directly tackle big data. The data loaded into these data mart technologies has been significantly trimmed down prior to being loaded, typically by one of the big data technologies mentioned above.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ESG reporting software
Data Shows How ESG Reporting Software Helps Companies Achieve Sustainability Goals
Big Data Infographic
ai in marketing
AI Helps Businesses Develop Better Marketing Strategies
Artificial Intelligence Exclusive
agenic ai
How Businesses Are Using AI to Make Smarter, Faster Decisions
Artificial Intelligence Exclusive
accountant using ai
AI Improves Integrity in Corporate Accounting
Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Tracking License Plates, Tracking Cellphones, and More

1 Min Read
Image
Analytics

Analytics for Emotional Examination?

4 Min Read

Top 2012 Resolution for Insurance Industry: Leverage Customer Data and Analytics

5 Min Read
Image
Best PracticesBig DataData ManagementData WarehousingHadoop

The Data Lake Debate: The Introduction

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?