Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Truth about Social Media Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > The Truth about Social Media Analytics
AnalyticsBest PracticesData QualityExclusivePredictive AnalyticsText AnalyticsWeb Analytics

The Truth about Social Media Analytics

metabrown
metabrown
6 Min Read
SHARE

Social media analytics – you want the truth? It’s messy, it’s awkward, and the results should be reviewed on an ongoing basis by people with good training and very suspicious minds. But it’s still useful.

You could remove the words “social media analytics” from that last paragraph and substitute “medicine”, “the legal system” or [insert your profession here] and it would still work, wouldn’t it? Because in real life, messy solutions are often the best solutions we have. Ours is not a text book world.

Social media analytics – you want the truth? It’s messy, it’s awkward, and the results should be reviewed on an ongoing basis by people with good training and very suspicious minds. But it’s still useful.

More Read

Storytelling with Data to Rally Support for Your Position
The Growing Importance Of Data Collection For Customer Service
Using Machine Learning to Prevent Fraud in E-Commerce Transactions
Customer Surveys – Using Text Analytics to Isolate the Reasons Behind Customer Dissatisfaction
Software Bill of Materials is Crucial for AI-Driven Cybersecurity

You could remove the words “social media analytics” from that last paragraph and substitute “medicine”, “the legal system” or [insert your profession here] and it would still work, wouldn’t it? Because in real life, messy solutions are often the best solutions we have. Ours is not a text book world.

Lines like, “You can’t handle the truth!” only work in movies. Come to think of it, that didn’t work in the movie, either. People want answers. But now that the truth is right in front of you, how will you handle it?

Why is social media analytics messy and awkward? For one thing, it’s the model of Big Data, and Big Data is certain to be… big. Massive quantity poses data management challenges. And then there’s quality. To put it simply, all measurements on the web are approximate. Things that make the web work – like caching, for instance – sometimes make it difficult to track and measure activity. Of course, that’s not the only kind of data quality problem in social media.

The demographics summary for any web content with a minimum age requirement shows that everyone downloading that content meets the minimum age requirement. These sites have registration or entry processes which, in short, say, “Hey, are you old enough?” The user answers, “Of course I’m old enough!” and may even provide a birthdate of the proper vintage. The report reflects what users tell us. Now, if you are not too sensitive for such things, please go read the comments on some adult video content and see if you believe all that stuff was written by people over 18. Much of the data in social media is self-reported, and self-reported data is open to quality problems.

Some data can be validated. On social media sites where real names are used, identity is validated by connection to others. But not all connections represent validation – some people connect based on what they see in the profile, not real-life familiarity. And not all the data is open to validation. Many people do not display their age, for example, in profiles. Who’s to know if such data is valid or not? Even if the data is displayed, who would report a friend for trimming off a couple of years – or adding them?

Is there value in this mass of dirty data? Yes there is. Do you first have to get the dataset into squeaky clean shape to extract value from it? Not necessarily. Let’s make this clear – it’s worthwhile to prevent data quality problems and correct problems when you can. But if all you see is what’s dirty in the data, you may be focusing on the wrong stuff.

Online, actions speak louder than… anything.

If you’re still hung up on demographics, consider that Todd Curry, CDO of Geomomentum, reported at the Math Men panel discussion in Chicago last summer, that an audit of audience data revealed that 40% of soccer moms were male, and 50% of seniors were under 50.

Your logs can’t tell you if I am really a woman, or whether I was born when I say I was born. But they can tell you what I do on your social media site. And here is one of the great advantages that social media enjoys over other types of web activity: because users must be logged in to use social media sites, the data recording user actions is some of the cleanest and most complete data in the online world.

Seriously, what do you care about gender, age or income? Those things are just proxies for what you really want to know – what people do, or what they are likely to do. You can invest a lifetime trying to clean up the demographics in social media data, or you can let your competitors waste their time on that while you concentrate on actions. Go straight to the best data you have, see what people are doing, and use analytics with this, your best data, to discover what predictive value you can find for actions that matter to you.

©2011 Meta S. Brown

 

TAGGED:social media analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Analytics: Not About Saving Time

7 Min Read

Forrester: Companies That Don’t Integrate Social Data Fail in the Age of the Customer

7 Min Read
social media analytics
Social Media Analytics

Social Analytics Tools Are Crucial for Successful Instagram Marketing

9 Min Read

How Habitat UK *should* have used Twitter

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?