Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Truth about Social Media Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > The Truth about Social Media Analytics
AnalyticsBest PracticesData QualityExclusivePredictive AnalyticsText AnalyticsWeb Analytics

The Truth about Social Media Analytics

metabrown
metabrown
6 Min Read
SHARE

Social media analytics – you want the truth? It’s messy, it’s awkward, and the results should be reviewed on an ongoing basis by people with good training and very suspicious minds. But it’s still useful.

You could remove the words “social media analytics” from that last paragraph and substitute “medicine”, “the legal system” or [insert your profession here] and it would still work, wouldn’t it? Because in real life, messy solutions are often the best solutions we have. Ours is not a text book world.

Social media analytics – you want the truth? It’s messy, it’s awkward, and the results should be reviewed on an ongoing basis by people with good training and very suspicious minds. But it’s still useful.

More Read

The Future of Digital Analytics, ‘Big Data’ and Marketing
What Enterprises Can Learn from Major Events and Surprises in 2011
Arguing for Increased Gut-feel in the Age of Analytics
Data Governance: Managing Data as an Asset
Cloud Technology: the Cornerstone of a Small Business’s Online Presence

You could remove the words “social media analytics” from that last paragraph and substitute “medicine”, “the legal system” or [insert your profession here] and it would still work, wouldn’t it? Because in real life, messy solutions are often the best solutions we have. Ours is not a text book world.

Lines like, “You can’t handle the truth!” only work in movies. Come to think of it, that didn’t work in the movie, either. People want answers. But now that the truth is right in front of you, how will you handle it?

Why is social media analytics messy and awkward? For one thing, it’s the model of Big Data, and Big Data is certain to be… big. Massive quantity poses data management challenges. And then there’s quality. To put it simply, all measurements on the web are approximate. Things that make the web work – like caching, for instance – sometimes make it difficult to track and measure activity. Of course, that’s not the only kind of data quality problem in social media.

The demographics summary for any web content with a minimum age requirement shows that everyone downloading that content meets the minimum age requirement. These sites have registration or entry processes which, in short, say, “Hey, are you old enough?” The user answers, “Of course I’m old enough!” and may even provide a birthdate of the proper vintage. The report reflects what users tell us. Now, if you are not too sensitive for such things, please go read the comments on some adult video content and see if you believe all that stuff was written by people over 18. Much of the data in social media is self-reported, and self-reported data is open to quality problems.

Some data can be validated. On social media sites where real names are used, identity is validated by connection to others. But not all connections represent validation – some people connect based on what they see in the profile, not real-life familiarity. And not all the data is open to validation. Many people do not display their age, for example, in profiles. Who’s to know if such data is valid or not? Even if the data is displayed, who would report a friend for trimming off a couple of years – or adding them?

Is there value in this mass of dirty data? Yes there is. Do you first have to get the dataset into squeaky clean shape to extract value from it? Not necessarily. Let’s make this clear – it’s worthwhile to prevent data quality problems and correct problems when you can. But if all you see is what’s dirty in the data, you may be focusing on the wrong stuff.

Online, actions speak louder than… anything.

If you’re still hung up on demographics, consider that Todd Curry, CDO of Geomomentum, reported at the Math Men panel discussion in Chicago last summer, that an audit of audience data revealed that 40% of soccer moms were male, and 50% of seniors were under 50.

Your logs can’t tell you if I am really a woman, or whether I was born when I say I was born. But they can tell you what I do on your social media site. And here is one of the great advantages that social media enjoys over other types of web activity: because users must be logged in to use social media sites, the data recording user actions is some of the cleanest and most complete data in the online world.

Seriously, what do you care about gender, age or income? Those things are just proxies for what you really want to know – what people do, or what they are likely to do. You can invest a lifetime trying to clean up the demographics in social media data, or you can let your competitors waste their time on that while you concentrate on actions. Go straight to the best data you have, see what people are doing, and use analytics with this, your best data, to discover what predictive value you can find for actions that matter to you.

©2011 Meta S. Brown

 

TAGGED:social media analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Sentiment Analysis Symposium call for speakers, and free videos from New York

2 Min Read
leveraging social data for ROI
Social Media Analytics

Leveraging Social Analytics for Optimizing Your Marketing Strategy

9 Min Read

Forrester: Companies That Don’t Integrate Social Data Fail in the Age of the Customer

7 Min Read

Does B2B Need Social? The Growing Importance of Social Media Analytics to B2B

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?