Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Taming Big Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Taming Big Data
Big DataIT

Taming Big Data

MartynJones
MartynJones
5 Min Read
Image
SHARE

ImageSimply stated, the best application of Big Data is in systems and methods that will significantly reduce the data footprint.

Why would we want to reduce the data footprint?

ImageSimply stated, the best application of Big Data is in systems and methods that will significantly reduce the data footprint.

Why would we want to reduce the data footprint?

More Read

Customer Service
Integrating Cybersecurity Responses into Your Customer Service Approach
Data, Data Everywhere
How to Ensure Your CRM Data is Fit for Purpose
Malicious AI? Report Shines Dark Light on Geotargeting
Big Data, Analytics, and the Changing Face of Supply Chain Management
  • Years of knowledge and experience in information management strongly suggests that more data does not necessarily lead to better data.
  • The more data there is to generate, move and manage, the greater the development and administrative overheads.
  • The more data we generate, store, replicate, move and transform, the bigger the data, energy and carbon footprints will become.

How can Big Data reduce Big Data?

  • We can use it in profiling, in order to identify the data that could be useful.
  • We can use it to identify immaterial, surplus and redundant data.
  • By using it to catalogue, categorise and classify certain high-volume data sources.

What can we do with the Big Data profile data?

  • We can use it to audit, analyse and review the generation, storage and transmission of data.
  • We can use the data to parameterise data generators and filters, and
  • To be used to generate ‘Big-Data-by-exception’ discrimination rules and as the basis for data discrimination based on directed machine-learning approaches.

So why would we do all of this?

  • We hear that Big Data represents a significant challenge.
  • The best way of dealing with significant challenges is to manufacture an appropriate, coherent and realisable response – a strategy.
  • By addressing the data problems up-stream we can then attempt to turn the Big Data problem into a more manageable data problem, or alternatively, we can choose to remove the problem.

How does this work in practice?

  • We can reduce the amount of data that we actually generate by removing unnecessary generation, storage and transmission of superfluous data. We can change logging, monitoring and signal data generators (applications and devices) so that they produce only concise and usable data. This requires modifications to parts of existing applications and application servers.
  • We can introduce data governors as intelligent data filters and actively exclude or include data in data flows. This is particularly relevant where we are dealing with really high-volume data throughput and bandwidth where release of data into the data streams is subject to rules of exception. For example, we may decide to exclude any market signal data that simply repeats the same price stated in previous data.
  • We can also filter data dimensionally; by association and abstraction of discrete phases, events, facets and values; and, by time, affinity and proximity.

What are the benefits?

  • Making data smaller reduces the data footprint – lower cost, less operational complexity and greater focus.
  • The earlier you filter data the smaller the data footprint is – lower costs, less operational complexity and greater focus.
  • A smaller data footprint accelerates the processing of the data that does have potential business value – lower cost, higher value, less complexity and best focus.

In order to tame Big Data?

  • We should only generate data that is required, that has value, and that has a business purpose – whether management oriented, business oriented or technical in nature.
  • We should filter Big Data, early and often.
  • We should store, transmit and analyse Big Data only when there is a real business imperative that prompts us to do so.

Conclusions?

  • Taming Big Data is a business, management and technical imperative.
  • The best approach to taming the data avalanche is to ensure there is no data avalanche – this is referred to as moving the problem upstream.
  • The use of smart ‘data governors’ will provide a practical way to control the flow of high volumes of data.

Next steps?

If you are interested in the approach to Big Data mentioned here and in particular want to know more about the definition, architecture and use of ‘data governors’ applied to data, then please leave a comment below.

Many thanks for reading.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

how big data is fueling sharing economy
Big DataBusiness IntelligenceExclusiveMarket ResearchNews

5 Ways Big Data is Fueling the Sharing Economy

6 Min Read

Why XML is incompatible with big data

2 Min Read

Fantasy League Data Quality

15 Min Read
data for your email marketing
Best PracticesData CollectionExclusiveMarket ResearchMarketing

How To Successfully Use Data For Your Email Marketing

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?