Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    payment methods
    How Data Analytics Is Transforming eCommerce Payments
    10 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Music App Predicting the 2014 Top Artists with Big Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Music App Predicting the 2014 Top Artists with Big Data
Data MiningModelingSocial DataSocial Media Analytics

Music App Predicting the 2014 Top Artists with Big Data

Todd Nevins
Todd Nevins
4 Min Read
Image
SHARE

Image15 million song identifications per day on the song finding app, Shazam, has provided the Big Data needed to predict who will hit and who will miss in the music scene for 2014.

Image15 million song identifications per day on the song finding app, Shazam, has provided the Big Data needed to predict who will hit and who will miss in the music scene for 2014.

Users activate the mobile music app for a few seconds while a song is being played on the radio, TV or even the shopping mall and the app immediately identifies the song and artist. Once the song is identified, the user can tweet or share the results socially, listen to it for free, watch YouTube videos of the performer, check out other songs by the artist and of course, purchase the song on iTunes. Now Shazam is using this data to predict which artists are expected to hit it big next year.

Shazam’s list of “Artists to Watch” and the Big Data behind it successfully predicted Lana del Ray in 2012 and French Montana for 2013. So what is the big deal behind the big data and how does it work? The first variable used is how frequently a song is identified using the app and combining this information with how frequently it was shared socially, emailed, purchased and if users watched YouTube videos of the performer or checked out other songs by the artist. This data is combined with critics’ reviews and added to this is the location data that the app is compiling to not only predict which artists have the best chance of ‘making it’ next year but also what countries, cities or regions it will happen in.

More Read

Google Analytics Achilles Heel
6 Ways Your Smart Home Data Will Help You Live a Better Life
How MapR’s M7 Platform Improves NoSQL and Hadoop
Design a Successful Business Dashboard: 3 Essential Tips
Saying Goodbye

Adding social data, location data mobile data and consumer behavior data with positive and negative criticism from the heavyweight industry critics has allowed Shazam to compile the latest list of who to watch out for next year.

The list of who is gaining traction via Shazam’s Big Data:

  • Action Bronson – released first album in 2011 and gained traction through mix tapes in 2013.
  • August Alsina – one of the most Shazamed rap songs of 2013.
  • Banks – released an acclaimed EP in 2013.
  • Jhené Aiko – collaborations with Drake and Big Sean in 2013 is launching her career.
  • Kid Ink – set to release his first major label album next year.
  • Lucy Hale – set to be the next country star after her role in ABC Family series, Pretty Little Liars.
  • Martin Garrix – a Dutch DJ and youngest person to top the Beatport charts.
  • Rich Homie Quan – named by the New York Times as one of “Atlanta’s rising generation of rappers.”
  • Sam Smith – soul artist born in London with contributions to two hits in 2013.
  • Vancy Joy – already achieving success in his home country of Australia, set to hit globally in 2014.

Check out the top Shazamed Songs of 2013.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Analytics Big Data Exclusive
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

QR Codes and Social Media

5 Min Read
Big DataExclusiveSocial Data

How Organizations Are Leveraging Big Data for the Greater Good

6 Min Read

Apache Spark and Hadoop: The best big data solution for enterprises

6 Min Read

Program-Ace offers fully-functional custom Virtual 3D City…

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?