Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Multistage Modeling with SAS Forecast Server Client (Part 1)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Multistage Modeling with SAS Forecast Server Client (Part 1)
Uncategorized

Multistage Modeling with SAS Forecast Server Client (Part 1)

mvgilliland
mvgilliland
3 Min Read
SHARE

Pu Wang is a Sr. Research Statistician in SAS R&D, and has contributed this post on multistage modeling in the new SAS Forecast Server web client.

Contents
  • Guest Blogger Pu Wang on Multistage Modeling
    • Hierarchical Forecasting

Pu Wang is a Sr. Research Statistician in SAS R&D, and has contributed this post on multistage modeling in the new SAS Forecast Server web client.

Guest Blogger Pu Wang on Multistage Modeling

Picture of Pu Wang

Pu Wang

The rapid development of information technologies in the recent decade provides forecasters with huge amount of data, as well as massive computing capabilities. However, “sufficient” data and strong computing power do not necessarily translate into good forecasts.

Different industries and products all have their unique demand patterns. There is not a one-size-fits-all forecasting model or technique.

More Read

Why Learn R? It’s the language of Statistics
How Do I Blog So Much?
Text Analytics in Telecommunications – Part 3
One to watch regarding standards and security
Why Bad Data Is Wasting Your Marketing Efforts

For example, in the consumer package goods (CPG) industry, demand at store-SKU level is usually sparse and noisy, which makes it difficult to extract price and promotional effects. For high frequency data such as hourly grocery basket transactions, it is inappropriate and inefficient to apply traditional time series models. A good forecasting model must be tailored for the data to capture the salient features and satisfy the business needs.

Hierarchical Forecasting

A hierarchy based multistage modeling strategy can be used to provide tailored forecasting models.

This strategy provides a general framework to build a forecasting system in three stages. The system determines a forecast reconciliation level, which is typically some higher level in the hierarchy.

  • In the first stage, data aggregation is applied to eliminate noise and reveal hidden features. Feature extraction techniques are combined with time series models to generate forecasts for aggregated data.
  • In the second stage, feature extraction techniques are applied again to pool salient features across multiple time series, and generate forecasts for each individual time series at low level.
  • In the third stage, it combines the forecasts obtained from the previous two stages, and conducts a top-down reconciliation to generate the final forecast.

This multistage modeling strategy is available as a plugin in the new SAS Forecast Server Client.

Diagram of Multistage Modeling

In Part 2, we will walk through an example to show the philosophy of the multistage modeling strategy, and the performance of this method compared to traditional time series model in terms of forecasting accuracy.

tags: forecast server client, hierarchical forecasting, multistage modeling, Pu Wang, SAS, SAS Forecast Server

The post Multistage modeling with SAS Forecast Server Client (Part 1) appeared first on The Business Forecasting Deal.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

multi model ai
How Teams Using Multi-Model AI Reduced Risk Without Slowing Innovation
Artificial Intelligence Exclusive
top data visualization tools
5 Top Data Visualization Tools for Research Projects
Big Data Data Visualization
cybersecurity tools
Evaluating the Best Value Cybersecurity Platforms for Enterprises
Exclusive IT Security
ai and satelite technology
How Machine Learning Improves Satellite Object Tracking
Exclusive Machine Learning

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Another view: maybe IT doesn’t want to be aligned to the business

1 Min Read

Training students on mega-scale data

3 Min Read

Is Unstructured Collaboration the Key to Business Agility?

5 Min Read

A fresh take on SAP’s strategy under the new Co-CEO’s

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?