Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Improving Big Data Analytics To Address Cybersecurity Challenges
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Privacy > Improving Big Data Analytics To Address Cybersecurity Challenges
Big DataData ManagementExclusivePrivacyRisk Management

Improving Big Data Analytics To Address Cybersecurity Challenges

Jonathan Zhang
Jonathan Zhang
5 Min Read
cybersecurity
Shutterstock Licensed Photo
SHARE

Advances in mass storage and mobile computing brought about the phenomenon we now know as “big data.” These developments then ushered in solutions and tools that can process vast amounts of information — think terabytes of it or more — in real-time. That is how “big” the need for big data analytics came to be.

Contents
Understanding Big Data AnalyticsIs Big Data Analytics a Silver Bullet?How Can Domain Data Enhance Big Data Analytics?

More specifically, big data analytics offers users the ability to generate relevant insights from heaps of data. InfoSec specialists, in particular, find big data analytics very helpful in analyzing online threats. But before we dive into its relevance for cybersecurity, let’s clarify how big data analytics works in a nutshell.

Understanding Big Data Analytics

Big data analytics is the process of evaluating large chunks of information at once. Said information can be a combination of semi-structured and unstructured data sets — coming from web server logs, social media, network traffic logs, etc.

The goal of big data analytics in cybersecurity is to uncover crucial details that can help companies make informed decisions. With such knowledge, cybersecurity teams can improve their network security and stay on top of emerging threats, thus preventing data breaches.

More Read

deep learning in accounting
Deep Learning is Critical for Modern Small Business Accounting
Do Customer Reviews Help or Hurt?
Carole-Ann’s Predictions for 2015!
Social Media Monitoring – Analyzing the Unexpected Results of Social Conversations
What is the Best AI-Driven App for Video Conferencing?

Is Big Data Analytics a Silver Bullet?

Big data analytics provides security analysts with the information they need to detect, observe, and examine concerns within their network more efficiently. This ability makes the process more proactive when it comes to warding off current and potential cyber threats.

With the right approach, relevant security information from big data can significantly reduce the time it takes for analysts to identify and resolve issues. As a result, specialists can even predict and prevent potential intrusions.

With that purpose in mind, is it enough to analyze the data from an organization’s network? Or is there a way to enhance big data analytics further?

Organizations need to have access to as much relevant information as possible to get the most out of big data. Additional sources can help analysts do much-needed comparisons and verification to determine priorities and protect IT systems against threats.

Since most cyberattacks involve the use of websites and IP addresses, enterprise data feed packages can improve an organization’s big data analytics capabilities.

How Can Domain Data Enhance Big Data Analytics?

Analysts can use historical domain data to identify websites that have had ties to attacks in the past. They can gather relevant details about a domain’s history and combine this with big data analytics tools. Doing so can provide cybersecurity experts with the information they need to obtain clues and even create threat profiles of the attackers.

Domain data from trusted WHOIS and IP geolocation databases can also contribute to pinpointing an attacker’s location. Details like the country and registrar associated with a domain may give hints on where an attack is coming from.

Another instance where big data on domains can be useful is in deploying an intrusion detection system (IDS). IDS experts may employ a large-scale WHOIS data repository that supplies them with real-time domain information to identify potential attack vectors. With the help of existing threat data and domain reports, teams can quickly spot suspicious network activities before these can result in attacks.

These are only a few examples of how domain data can improve big data analytics in cybersecurity.

Big data analytics in cybersecurity works best when companies have access to as much available information as possible. Only with comprehensive intelligence on IP addresses, domain names, and other relevant threat investigation sources can organizations enhance their network security to stay safe against even unknown cyberattacks.

When choosing the right data sources, consider one that doesn’t require manipulation to fit the requirements of already-existing systems. A WHOIS data provider like whoisxmlapi.com can help organizations reinforce their defenses against ever-evolving cyber threats.

TAGGED:big datacybersecuritycybersecurity challengescybersecurity threatsimproving big data
Share This Article
Facebook Pinterest LinkedIn
Share
ByJonathan Zhang
Follow:
Jonathan Zhang is the founder and CEO of Threat Intelligence Platform (TIP)—a data, tool, and API provider that specializes in automated threat detection, security analysis, and threat intelligence solutions for Fortune 1000 and cybersecurity companies. TIP is part of the WhoisXML API Inc. family, a trusted intelligence vendor by over 50,000 clients.

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data age and background check
Big DataExclusive

Growing Depth Of Background Checks In The Big Data Age

9 Min Read
forecasting analytics
Predictive Analytics

Forecasting Is Harder Than It Looks

2 Min Read
data-driven app development
Big Data

Is Data-Driven App Development a Viable Business Model During the Pandemic?

6 Min Read
data security
Security

6 Essential Practices For Data Security With Remote Working

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?