Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Improving Big Data Analytics To Address Cybersecurity Challenges
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Privacy > Improving Big Data Analytics To Address Cybersecurity Challenges
Big DataData ManagementExclusivePrivacyRisk Management

Improving Big Data Analytics To Address Cybersecurity Challenges

Jonathan Zhang
Jonathan Zhang
5 Min Read
cybersecurity
Shutterstock Licensed Photo
SHARE

Advances in mass storage and mobile computing brought about the phenomenon we now know as “big data.” These developments then ushered in solutions and tools that can process vast amounts of information — think terabytes of it or more — in real-time. That is how “big” the need for big data analytics came to be.

Contents
  • Understanding Big Data Analytics
  • Is Big Data Analytics a Silver Bullet?
  • How Can Domain Data Enhance Big Data Analytics?

More specifically, big data analytics offers users the ability to generate relevant insights from heaps of data. InfoSec specialists, in particular, find big data analytics very helpful in analyzing online threats. But before we dive into its relevance for cybersecurity, let’s clarify how big data analytics works in a nutshell.

Understanding Big Data Analytics

Big data analytics is the process of evaluating large chunks of information at once. Said information can be a combination of semi-structured and unstructured data sets — coming from web server logs, social media, network traffic logs, etc.

The goal of big data analytics in cybersecurity is to uncover crucial details that can help companies make informed decisions. With such knowledge, cybersecurity teams can improve their network security and stay on top of emerging threats, thus preventing data breaches.

More Read

Top 8 Big Data Trends That Marketers Should Care About
Building Your Analytical Team: Tips for Executives
The analyst function is dead
You May Not Be as Anonymous as You Think
How Will Industrial Internet Of Things Shape CNC Machining?

Is Big Data Analytics a Silver Bullet?

Big data analytics provides security analysts with the information they need to detect, observe, and examine concerns within their network more efficiently. This ability makes the process more proactive when it comes to warding off current and potential cyber threats.

With the right approach, relevant security information from big data can significantly reduce the time it takes for analysts to identify and resolve issues. As a result, specialists can even predict and prevent potential intrusions.

With that purpose in mind, is it enough to analyze the data from an organization’s network? Or is there a way to enhance big data analytics further?

Organizations need to have access to as much relevant information as possible to get the most out of big data. Additional sources can help analysts do much-needed comparisons and verification to determine priorities and protect IT systems against threats.

Since most cyberattacks involve the use of websites and IP addresses, enterprise data feed packages can improve an organization’s big data analytics capabilities.

How Can Domain Data Enhance Big Data Analytics?

Analysts can use historical domain data to identify websites that have had ties to attacks in the past. They can gather relevant details about a domain’s history and combine this with big data analytics tools. Doing so can provide cybersecurity experts with the information they need to obtain clues and even create threat profiles of the attackers.

Domain data from trusted WHOIS and IP geolocation databases can also contribute to pinpointing an attacker’s location. Details like the country and registrar associated with a domain may give hints on where an attack is coming from.

Another instance where big data on domains can be useful is in deploying an intrusion detection system (IDS). IDS experts may employ a large-scale WHOIS data repository that supplies them with real-time domain information to identify potential attack vectors. With the help of existing threat data and domain reports, teams can quickly spot suspicious network activities before these can result in attacks.

These are only a few examples of how domain data can improve big data analytics in cybersecurity.

Big data analytics in cybersecurity works best when companies have access to as much available information as possible. Only with comprehensive intelligence on IP addresses, domain names, and other relevant threat investigation sources can organizations enhance their network security to stay safe against even unknown cyberattacks.

When choosing the right data sources, consider one that doesn’t require manipulation to fit the requirements of already-existing systems. A WHOIS data provider like whoisxmlapi.com can help organizations reinforce their defenses against ever-evolving cyber threats.

TAGGED:big datacybersecuritycybersecurity challengescybersecurity threatsimproving big data
Share This Article
Facebook Pinterest LinkedIn
Share
ByJonathan Zhang
Follow:
Jonathan Zhang is the founder and CEO of Threat Intelligence Platform (TIP)—a data, tool, and API provider that specializes in automated threat detection, security analysis, and threat intelligence solutions for Fortune 1000 and cybersecurity companies. TIP is part of the WhoisXML API Inc. family, a trusted intelligence vendor by over 50,000 clients.

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

email data analytics
AnalyticsBig DataFeaturedMarketing

Data Analytics Provides New Insights on Email Marketing Metrics

8 Min Read
big data skills gap
Big DataData ScienceExclusiveJobsNews

Overcoming the Big Data Skills Gap: The State of the Labor Market

5 Min Read
big data and Hadoop guide
AnalyticsBig DataExclusiveHadoopSoftware

How Big Data and Hadoop Training Programs Can Make a Big Difference

5 Min Read

Big Data Analytics: The Four Pillars

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?