Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Emerging Big Data Ecosystem
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Knowledge Management > The Emerging Big Data Ecosystem
Big DataKnowledge ManagementNew Products

The Emerging Big Data Ecosystem

Barry Devlin
Barry Devlin
0 Min Read
SHARE

Integrated information Platform.pngSlowly but surely, big data is becoming mainstream.  Of course, if you listened only to the hype from analysts and vendors, you might think this was already the case.  I suspect it’s more like teenage sex, more talked about than actually happening.  But, seems like we’re about to move into roaring twenties.

I had the pleasure to be invited as the external expert speaker at IBM’s PureData launch in Boston this week.  In a theatrical, dry-ice moment, IBM rolled out one of their new PureData machines between the previously available PureFlex and PureApplication models.  However, for me, the launch carried a much more complex and, indeed, subtle message than “here’s our new, bright and shiny hardware”.  Rather, it played on a set of messages that is gradually moving big data from a specialized and largely standalone concept to an all-embracing, new ecosystem that includes all data and the multifarious ways business needs to use it.

Despite long-running laments to the contrary, IT has had it easy when it comes to data management and governance.  Before you flame me, please read at least the rest of this paragraph.  Since the earliest days of general-purpose business computing in the 1960s, we’ve worked with a highly modeled and carefully designed representation of reality.  Basically, we’ve taken the messy, incoherent record of what really happens in the real word and hammered it into relational (and previously popular hierarchical or network) databases.  To do so, we’ve worked with highly simplified models of the world.  These simplifications range from grossly wrong (all addresses must include a 5-digit zip-code–yes, there are still a few websites that enforce that rule) to obviously naive (multiple purchases by a customer correlate to high loyalty) as well as highly useful to managing and running a business (there exists a single version of the truth for all data).  The value of useful simplifications can be seen in the creation of elegant architectures that enable business and IT to converse constructively about how to built systems the business can use.  They also reduce the complexity of the data systems; one size fits all.  The danger lies in the longer-term rigidity such simplifications can cause.

The data warehouse architecture of the 1980s, to which I was a major contributor, of course, was based largely on the above single-version-of-the-truth simplification.  There’s little doubt it has served us well.  But, big data and other trends are forcing us to look again at the underlying assumptions.  And find them lacking. IBM (and it’s not alone in this) has recognized that there exists different business use patterns of data which lead to different technology sweet spots.  The fundamental precept is not new, of course.  The division of computing into operational, informational and collaborative is closely related.  The new news is that the usage patterns are non-exclusive and overlapping; and they need to co-exist in any business of reasonable size and complexity.  I can identify four major business patterns: (1) mainstream daily processing, (2) core business monitoring and reporting, (3) real-time operational excellence and (4) data-informed planning and prediction.  And there are surely more.  This week, IBM announced three differently configured models: (1) PureData System for Transactions, (2) for Analytics and (3) Operational Analytics, each based on existing business use patterns and implementation expertise.  Details can be found here.  I imagine we will see further models in the future.

More Read

Image
The Top of the Data Quality Bell Curve
Learning SAS for SPSS Users
Take the Predictive Analytics in the Cloud survey
6 Important Big Data Future Trends, According To Experts
IBM betting big on blockchain by creating an ‘ecosystem’

All of this leads to a new architectural picture of the world of data–an integrated information platform, where we deliberately move form a layered paradigm to one of interconnected pillars of information, linked via integration, metadata and virtualization.  A more complete explanation can be found in my white paper, “The Big Data Zoo–Taming the Beasts:  The need for an integrated platform for enterprise information”.  As always, feedback is very welcome–questions, compliments and criticisms.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

challenge of self driving car
Data VisualizationExclusive

How To Solve The Data Management Challenge Of Self-Driving Cars

8 Min Read
Cryptocurrency startups
Big DataBlockchain

Big Data Cuts Funding Barriers for Cryptocurrency Startups

5 Min Read
Image
AnalyticsBest PracticesBig DataBusiness IntelligenceCloud ComputingData ManagementData MiningData VisualizationExclusiveHadoopHardwareITMapReducePolicy and GovernanceSoftwareUnstructured Data

6 Simple Steps to a Big Data Strategy

6 Min Read

The Rise of the Columnar Database

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?