By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    football analytics
    The Role of Data Analytics in Football Performance
    9 Min Read
    data Analytics instagram stories
    Data Analytics Helps Marketers Make the Most of Instagram Stories
    15 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Dealing with the Vast Variety of Big Data
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Dealing with the Vast Variety of Big Data
Big Data

Dealing with the Vast Variety of Big Data

Roman Vladimirov
Last updated: 2014/01/16 at 3:38 PM
Roman Vladimirov
3 Min Read
Image
SHARE

ImageThe key word in the phrase big data is “big.” While this might seem obvious on a certain level, it can be easy to take this method and the tools associated with it – such as business intelligence software an

ImageThe key word in the phrase big data is “big.” While this might seem obvious on a certain level, it can be easy to take this method and the tools associated with it – such as business intelligence software and platforms – for granted. A major example of this can be seen in the prevalence of unstructured data within many organizations’ infrastructure. If a company undertakes a major data initiative and does so without the right software and no concrete plan for organization or structure, this can become a significant problem. It will also be important to pay attention to the differences between master and application data.

Looking to make sense of the unstructured
In a recent blog post, Tim Sheedy, an analyst with the firm Forrester Research, commented on the profligate nature of unstructured data. The essential definition of this term, for Sheedy, is information contained somewhere within a company or organization’s IT infrastructure that has no concrete or actionable value.

Most of the businesses out there, ranging from large enterprises to small and medium-sized businesses, have at least some unstructured data. It’s almost impossible to have none of it. But beyond a certain point, it becomes notably problematic. It can be a drain on productivity and cut away at the efficiency of BI and analytics. The software that deals with big data as a whole must mine all unstructured information, ranging from software code to messaging data, and find effective purposes for it.

More Read

Shutterstock Licensed Photo - 1051059293 | Rawpixel.com

QR Codes Leverage the Benefits of Big Data in Education

The Role of Data Analytics in Football Performance
7 Mind-Blowing Ways Smart Homes Use Data to Save Your Money
What to Know Before Recruiting an Analyst to Handle Company Data
Tackling Bias in AI Translation: A Data Perspective

Master vs. application – the differences
In the drive to make complete sense of all of the information that passes through an organization and powers all of its essential processes, it is important to differentiate between all of its disparate categories. Master data and application data are majorly significant among these.

According to Gartner’s Andrew White, a research VP with the research firm, it’s a fairly basic difference. Master data can be used and distributed throughout multiple business applications, whereas application data is, as its name indicates, specific to a single app or purpose. White argues that it’s essential for organizations to utilize BI and data solutions that take this distinction into account and help apply some semblance of governance, which is essential.

The problems that could arise if this issue is not properly addressed are significant. These include the possibility of increased integration, storage and application costs, and can also cause data to become siloed, ultimately limiting its usefulness.

Roman Vladimirov January 16, 2014
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Shutterstock Licensed Photo - 1051059293 | Rawpixel.com
QR Codes Leverage the Benefits of Big Data in Education
Big Data
football analytics
The Role of Data Analytics in Football Performance
Analytics Big Data Exclusive
smart home data
7 Mind-Blowing Ways Smart Homes Use Data to Save Your Money
Big Data
ai low code frameworks
AI Can Help Accelerate Development with Low-Code Frameworks
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Shutterstock Licensed Photo - 1051059293 | Rawpixel.com
Big Data

QR Codes Leverage the Benefits of Big Data in Education

7 Min Read
football analytics
AnalyticsBig DataExclusive

The Role of Data Analytics in Football Performance

9 Min Read
smart home data
Big Data

7 Mind-Blowing Ways Smart Homes Use Data to Save Your Money

7 Min Read
analyst,women,looking,at,kpi,data,on,computer,screen
Analytics

What to Know Before Recruiting an Analyst to Handle Company Data

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?