Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Analysts, Data Scientists, and the Rest of Us
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Culture/Leadership > Data Analysts, Data Scientists, and the Rest of Us
AnalyticsCulture/Leadership

Data Analysts, Data Scientists, and the Rest of Us

Timo Elliott
Timo Elliott
6 Min Read
SHARE

data-scientist-banner

data-scientist-banner

This post is part of a “blogorama” organized by smartdatacollective.com– see “The Emerging Role of the Analyst” for links to other bloggers’ views of this theme.

More Read

The Data Analytics of the Oscars
Early Indications October 2010: The Analytics Moment: Getting numbers to tell stories
DirectX Visualization Optimizes Analytics Algorithmic Traders
What’s Wrong with Today’s Planning and Budgeting
Top BI and Analytics Tools for Data-Driven Businesses

Recently, I’ve been feeling like I’ve stepped through a looking glass to another similar-but-very-different world. I’m steeped in 20+ years in corporate data warehousing and business intelligence practice. Throughout that time, there have been big and small technology improvements, but nothing truly disruptive (although new analytic platforms are coming).

Meanwhile, a completely different thread of data analysis has emerged, with roots in open-source software, notably Hadoop, primarily designed for processing massive amounts of semi-structured web data. As the technology has advanced, it’s making more and more impact on “traditional” data warehousing.

The people using these new technologies have founded their own visions of what the role of an analyst looks like, or as they call it, a “data scientist”. DJ Patil and Jeff Hammerbacher coined the term a few years ago (there’s a nice graphical summary of the data scientist role by David Vellante), and DJ recently wrote an excellent piece defining the role.

He explains the skills a data scientist needs to be successful:

  • Finding rich data sources.
  • Working with large volumes of data despite hardware, software, and bandwidth constraints.
  • Cleaning the data and making sure that data is consistent.
  • Melding multiple datasets together.
  • Visualizing that data.
  • Building rich tooling that enables others to work with data effectively.

Reading the list, I couldn’t help but say to myself “people have been doing this since computers were invented! what’s the big deal!”, but ultimately I’m excited about the new technology possibilities and a new point of view, and  I’m looking forward to a synthesis of the best of the old and the new to get even more business value out of data.

But the booming interest in “data scientists” also worries me: the underlying premise is that (a) “advanced” analytics is what’s most important, and (b) analytics is the domain of “scientists”. The focus of the data scientists article is generally about elite teams working on advanced, strategic problems. A data science team is defined as:

“a group that includes people working in design, web development, engineering, product marketing, and operations” that “delve into existing data sources and meld them with external data sources to understand the competitive landscape, prioritize strategy and tactics, and provide clarity about hypotheses that may arise during strategic planning.”

Over the years, we’ve made slow progress towards making everybody in the organization “responsible” for analysis, and it would be a shame if data scientists became the new high priests of knowledge. To get business value, number-crunching has to be combined with the knowledge spread through the company. I believe that it takes people to turn information into intelligence, and rather than focusing only on advanced analytics, we need to encourage all employees to be more data literate (see this example of what can go wrong) and encourage more shared analysis.

Luckily, it seems data scientists do indeed share these values:

“I’ve found that the strongest data-driven organizations all live by the motto “if you can’t measure it, you can’t fix it” (a motto I learned from one of the best operations people I’ve worked with). This mindset gives you a fantastic ability to deliver value to your company by:

  • Instrumenting and collecting as much data as you can. Whether you’re doing business intelligence or building products, if you don’t collect the data, you can’t use it.
  • Measuring in a proactive and timely way. Are your products, and strategies succeeding? If you don’t measure the results, how do you know?
  • Getting many people to look at data. Any problems that may be present will become obvious more quickly — “with enough eyes all bugs are shallow.”
  • Fostering increased curiosity about why the data has changed or is not changing. In a data-driven organization, everyone is thinking about the data.”

And:

“More sophisticated data-driven organizations thrive on the “democratization” of data. Data isn’t just the property of an analytics group or senior management. Everyone should have access to as much data as legally possible.”

These statements seem to be at odds with the whole notion of “data scientist” as an elite role, but maybe we’re “all data scientists now”?

Personally, I’m excited about the possibility of finding common ground, with new collaborative decision technologies such as SAP StreamWork that allow us not only to “get more people to look at data”, but share their different knowledge and points of view, align it with the key business concerns and learn from our past decision-making mistakes.

TAGGED:Role of the Analyst
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Ever-changing Analyst Role

10 Min Read

Top Data Analysts Must ‘Speak the Language of the Business’

4 Min Read

Analysts As Rock Stars? Don’t Be A One Hit Wonder!

6 Min Read

The Emerging Role of the Analyst – Posts from the Blogosphere

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?