Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data Insights Through Predictive Analytics, Open Standards and Cloud Computing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > IT > Cloud Computing > Big Data Insights Through Predictive Analytics, Open Standards and Cloud Computing
AnalyticsCloud ComputingPredictive Analytics

Big Data Insights Through Predictive Analytics, Open Standards and Cloud Computing

MichaelZeller
MichaelZeller
5 Min Read
SHARE

Organizations increasingly recognize the value that predictive analytics and big data offer to their business. The complexity of development, integration, and deployment of predictive solutions, however, is often considered cost-prohibitive for many projects. In light of mature open source solutions, open standards, and SOA principles we propose an agile model development life cycle that quickly leverages predictive analytics in operational environments.

Organizations increasingly recognize the value that predictive analytics and big data offer to their business. The complexity of development, integration, and deployment of predictive solutions, however, is often considered cost-prohibitive for many projects. In light of mature open source solutions, open standards, and SOA principles we propose an agile model development life cycle that quickly leverages predictive analytics in operational environments.

Starting with data analysis and model development, you can effectively use the Predictive Model Markup Language (PMML) standard, to move complex decision models from the scientist’s desktop into a scalable production environment hosted in the cloud (Amazon EC2 and IBM SmartCloud Enterprise).

Expressing Models in PMML

More Read

Has the Twitter Trend Reached its Apex – Even Among Marketers?
Dick Smith Electronics
How Real-Time and Location Data Are Revolutionizing the Healthcare Industry
Some Thoughts on Pushing BI Beyond Business Managers
5 Reasons Why You Should Store Big Data In The Cloud

PMML is an XML-based language used to define predictive models. It was specified by the Data Mining Group, an independent group of leading technology companies including Zementis. By providing a uniform standard to represent such models, PMML allows for the exchange of predictive solutions between different applications and various vendors.

Open source PMML-compliant statistical tools such as R, KNIME, and RapidMiner can be used to develop data mining models based on historical data. Once models are exported into a PMML file, they can then be imported into an operational decision platform and be ready for production use in a matter of minutes.

On-Demand Predictive Analytics

Both Amazon and IBM offer a reliable and on-demand cloud computing infrastructure on which we offer the ADAPA® Predictive Decisioning Engine based on the Software as a Service (SaaS) paradigm. ADAPA imports models expressed in PMML and executes these in batch mode, or real-time via web-services.

Our service is implemented as a private, dedicated instance of ADAPA. Each client has access to his/her own ADAPA Engine instance via HTTP/HTTPS. In this way, models and data for one client never share the same engine with other clients.

The ADAPA Web Console

Each instance executes a single version of the ADAPA engine. The engine itself is accessible through the ADAPA Web Console which allows for the easy managing of predictive models and data files. The instance owner can use the console to upload new models as well as score or classify records on data files in batch mode. Real-time execution of predictive models is achieved through the use of web-services. The ADAPA Console offers a very intuitive interface which is divided into two main sections: model and data management. These allow for existing models to be used for generating decisions on different data sets. Also, new models can be easily uploaded and existing models can be removed in a matter of seconds.

Predicting in the Cloud

Using a SaaS solution to break down traditional barriers that currently slow the adoption of predictive analytics, our strategy translates predictive solutions into operational assets with minimal deployment costs and leverages the inherent scalability of utility computing.

In summary, ADAPA revolutionizes the world of predictive analytics and cracks the big data code, since it allows for:

    • Cost-effective and reliable service based on two outstanding cloud computing infrastructures: Amazon and IBM.
    • Secure execution of predictive models through dedicated and controlled instances including HTTPS and Web-Services security
    • On-demand computing. Choice of instance type and launch of multiple instances.
  • Superior time-to-market by providing rapid deployment of predictive solutions and an agile enterprise decision management environment.
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

sales and data analytics
AnalyticsBig DataExclusive

How Data Analytics Improves Lead Management and Sales Results

9 Min Read
ERP Systems Integration
Cloud ComputingSoftware

The Need for ERP Systems Integration and How EPM Software Can Help

5 Min Read

The Road to Operational Analytics

6 Min Read

Why Predictive Analytics is Important and More

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?