Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Beyond the Data Management Basics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Beyond the Data Management Basics
AnalyticsBest PracticesData Mining

Beyond the Data Management Basics

MIKE20
MIKE20
5 Min Read
SHARE

Amazon, Apple, Facebook, and Google

Contents
  • Necessary and Sufficient
  • Simon Says
  • Feedback

Fast Company recently ran a fantastic article on the success and futures of Amazon, Apple, Facebook, and Google. These companies do so many things really well, not the least of which is their their astonishing levels of data management. From the piece:

Amazon, Apple, Facebook, and Google

More Read

Courting Better Health: Time to Focus on Health Analytics
Jira Service Management vs Zendesk: What Are the Differences?
Test, Learn, Adapt: Using Analytics to Improve Public Policy
Inventory Analysis: Affordable, Available, Actionable
Weirdness is the “Curse of Dimensionality”

Fast Company recently ran a fantastic article on the success and futures of Amazon, Apple, Facebook, and Google. These companies do so many things really well, not the least of which is their their astonishing levels of data management. From the piece:

Data is like mother’s milk for [these companies]. Data not only fuels new and better advertising systems (which Google and Facebook depend on) but better insights into what you’d like to buy next (which Amazon and Apple want to know). Data also powers new inventions: Google’s voice-recognition system, its traffic maps, and its spell-checker are all based on large-scale, anonymous customer tracking. These three ideas feed one another in a continuous (and often virtuous) loop. Post-PC devices are intimately connected to individual users. Think of this: You have a family desktop computer, but you probably don’t have a family Kindle. E-books are tied to a single Amazon account and can be read by one person at a time.

In a word, wow.

Consider what Amazon, Apple, Facebook, and Google (aka the Gang of Four) do with their data in relation to the average large organization. By way of stark contrast, at a recent conference I attended, DataFlux CEO Tony Fisher described how most companies need a full two days to gather a list of their customers.

Think about that.

Two days.

When I heard that statistic, I couldn’t help but wonder about the following questions:

  • Is this list of customers ultimately accurate?
  • Why does this take so long? Why can’t someone just run a report?
  • How many organizations are trying to fix this–especially those that take two weeks or more?
  • What about other types of lists (read: products, employees, vendors, etc.)?
  • What kind of resources are involved in cobbling together these types of reports?
  • How can an organization understand its customers’ motivations, preferences, and purchasing habits when, as is too often the case, even the definition of the term customer is in dispute?
  • Most important, what if the organization managed its data better and its data were more accurate, what else could it do with the time and resources required to “keep the lights on”?

Ah, good old opportunity cost. Think about what Amazon can do because it knows exactly who its customers are, which products they buy and when, and (increasingly) why they buy. Bezos and company waste no time and resources in being able to immediately pull accurate and comprehensive lists of who bought what and when.

How can an organization understand its customers’ motivations, preferences, and purchasing habits when, as is too often the case, even the definition of the term customer is in dispute?

Necessary and Sufficient

For good reason, the Gang of Four keeps its internal methods and systems pretty much under wraps. Even people who have written books about each company have had difficulty speaking with key internal players, as Richard Brandt (author of a forthcoming book on Amazon) recently told me.

However, this much I can write without fear of accurate contradiction: each did not achieve its level of success by poorly managing its data. Put differently, in the Age of the Platform, excellent data management is becoming a necessary–but insufficient–condition for success these days.

Simon Says

This is not 1995; companies don’t buy even staple products such as Microsoft Windows or Office because no legitimate alternatives exist. “Have to” is increasingly being replaced with “want to.” You won’t know the difference between the two unless you know your customers.

Feedback

What say you?

By Phil Simon @philsimon

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Using Data Science on TripAdvisor Reviews (Part 1)

6 Min Read

Poll Results: What Networks Do You Use?

2 Min Read

Using Social Media Analytics to Extend Business Intelligence

1 Min Read

An Analysis of the R-help Mailing List

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?