Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Comments on the Nine Laws of Data Mining
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Comments on the Nine Laws of Data Mining
Data MiningPolicy and Governance

Comments on the Nine Laws of Data Mining

SandroSaitta
SandroSaitta
3 Min Read
SHARE

lawAfter reading the article from Tom Khabaza, I want to discuss some aspects of it with you.

lawAfter reading the article from Tom Khabaza, I want to discuss some aspects of it with you. The article is in general nicely written and shows the experience of the author, however I do have comments for some of the laws.  In the first law, it is stated that that there is no data mining without business objective. While it is true most of the time, this is not always the case. In R&D, a data mining project can be started without clear business goal.

Since data mining may discover unexpected knowledge, there may be no defined objective at the beginning of the project. Later in the project, one can define the objective if specific trends has been found in the data for example. Clearly, there are two approaches for data mining in the company: top-down and bottom-up. The top-down approach is driven by business needs. The bottom-up approach is driven by the data. Both approaches can be complementary. When you are driven by the data, the business objective may come later. If you discover that there is no usable trend in the data, maybe there is no place for a project and thus no business objective. But there is still data mining.

In the second law, Khabaza states an excellent point about the importance to understand the business:

More Read

Social Media Analytics – Understanding Your Social Customer and Context
Rexer Analytics Survey – are data miners too focused on their models?
Business Rules to Programmers – Methink thou doest protest too much II
Surviving the downturn lesson #73431
Standardizing Data Migration

“[…] whatever is found in the data has significance only when interpreted using business knowledge, and anything missing from the data must be provided through business knowledge.”

In the fourth law, Khabaza explains that  problem formulation and resolution are both tasks for the data miner:

“However, these views arise from the erroneous idea that, in data mining, the data miner formulates the problem and the algorithm finds the solution.  In fact, the data miner both formulates the problem and finds the solution – the algorithm is merely a tool which the data miner uses to assist with certain steps in this process”

It means that the complete knowledge discovery process can’t be automated. The data miner has to formulate the problem, solve it and interpret the results. However, parts of the data mining process can still be automated (ETL, building the model, scoring, etc.)

Read the full article from Tom Khabaza.

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

AI-driven SEO
Big DataData Mining

How Data Mining Tools Break Through Misconceptions To Optimize SEO

6 Min Read

SaaS business development

4 Min Read

Digital Governance: You’re Doing it Wrong

3 Min Read

Citizen’s Briefing Book Idea on Change.gov: Help Build a…

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?