Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Benchmarking Revolution R for Data Mining
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Benchmarking Revolution R for Data Mining
Data Mining

Benchmarking Revolution R for Data Mining

DavidMSmith
DavidMSmith
4 Min Read
SHARE

The blog Heuristically Andrew puts Revolution R through its paces by running some benchmarks versus open-source R for data mining applications. The benchmarks set out to answer the following question:

The blog Heuristically Andrew puts Revolution R through its paces by running some benchmarks versus open-source R for data mining applications. The benchmarks set out to answer the following question:

I recently upgraded my notebook (where I often use R for data mining) and was faced with two questions: for the fastest speed for building models, do I use the R or Revolution R, and do I enable Hyper-Threading?

The post includes benchmark code for several computations in both R and Revolution R, with and without hyperthreading enabled, and the results are summarized in the following chart:

More Read

Data Mining Theory vs. Practice
Put Predictive Analytics To Work in Operations
ISO TC 184/SC 4 Conference in Canada
Good Data
What is the Biggest Challenge for Big Data?

R_benchmark_revolution_htt_20

The height of each bar is execution time, so a smaller bar is better. First thing to notice is that using hyper-threading or not doesn’t make a whole lot of difference. (In each group, compare bar 1 with bar 2, and bar 3 with bar 4: not much difference.) That’s in line with my experience, too: while hyper-threading can make one processor appear as two processors to the operating system, I’ve never seen it improve the performance of computations that would normally consume nearly 100% of the processor anyway.

As shown by these benchmarks, Revolution R offers a nice performance boost for building tree models with the ctree function. This is a function from a user-written CRAN package (party), and I’d guess that the underlying code makes extensive use of native R operations like those in our R peformance benchmarks that benefit from the parallel MKL math library linked with Revolution R. (It’s also possible that underlying C or C++ code calls level-2 BLAS functions directly, which would also benefit.) If a package doesn’t make much use of such matrix operators (like the earth function for MARS models), you won’t much of a speedup. 

The k function — a simple, tight arithmetic loop that doesn’t do any heavy lifting with matrices — has is of the same class. It was interesting to see the benefits of the new compile function in R 2.13: the lk function is a byte-compiled version of k, and byte-compilation offers some nice benefits. Dirk Eddelbuettel ran some similar tests soon after R 2.13.0 was released. (Byte-compilation isn’t currently available in Revolution R, which will upgrade to R 2.13 after the final 2.13.x patch is released by the Core Group.)

The post concludes:

I already used Revolution R on Amazon EC2, and for now, I plan to switch to Revolution R on Windows too. I’ll leave HTT enabled in case it helps other tasks.

If you’d like to do the same, you can purchase Revolution R Enterprise online, or download it for free if you’re at an academic institution. Check out the post at the Heuristically Andrew blog for the full details and code of this interesting benchmarking exercise.

Heuristically Andrew: Benchmarking R, Revolution R, And HyperThreading For Data Mining

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive
street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Analytics: Math, Operations Research, Statistics Driving…

1 Min Read

Looking Back at 14 Years of White House Website Designs…in Pictures

4 Min Read
Image
Best PracticesData MiningModelingPredictive Analytics

Data Scientists Should Be the New Factory Workers

5 Min Read

Auto-correlation for time series analysis

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?