Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Using Recommendation Engines to Reduce Subscription Service Churn
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > Using Recommendation Engines to Reduce Subscription Service Churn
AnalyticsBig DataBusiness IntelligenceHadoopITMapReduceMarketing AutomationSoftwareUnstructured Data

Using Recommendation Engines to Reduce Subscription Service Churn

Davemendle
Davemendle
7 Min Read
SHARE

Recommendation engines are the digital version of the pot of gold at the end of the Big Data rainbow. Imagine being able to know, in near-time, what your customers really want and when they want it. For a subscription service, the gold is even brighter: You can deliver your customers’ desires directly to them, leading to a dramatic reduction in churn.

Recommendation engines are the digital version of the pot of gold at the end of the Big Data rainbow. Imagine being able to know, in near-time, what your customers really want and when they want it. For a subscription service, the gold is even brighter: You can deliver your customers’ desires directly to them, leading to a dramatic reduction in churn.

But that’s assuming you manage to create a recommendation engine that actually works. We’ve all had the experience, as consumers, of seeing websites offer us “personalized recommendations” for products and services that have nothing to do with what we really want, need, or could be persuaded to try.

The Keys to Recommendation Success

More Read

data analytics guide
Importance Of Using Data Analytics To Optimize Lead Pipelines
Numbers Everyone Should Know
How To Leverage The Power Of Artificial Intelligence In eCommerce
Slow BI and the BIG Method Part 1
Big Data Analysis for Health and Safety in the Workplace

Recommendation engines sound like they should be easy to build—you’re simply filtering available offerings based on a customer’s past likes. The problem is that what your customer likes today may be of no interest to them tomorrow.

Good recommendation engines weigh the big picture against sudden interests—does your customer really want to know about puppy training or listen to Mississippi Blues, or was their interest in a topic or genre a passing whim, or research for a now-finished project? And do you want to push more of the same on customers, or would they prefer to explore different, but related, aspects of their primary interests?

The decisions that need to be made are many, but one thing is certain: The more data you have, the better you can segment customers to compare their likes and dislikes and produce valid, interesting recommendations for the content that they truly want to consume.

Basic Building Blocks

A recommendation engine will obviously work best if a business has a sizable subscriber user base and a significant inventory of content. Assuming that you have both, your first big decision is whether you wish to use a collaborative filter approach or the content-centric approach.

A collaborative filtering algorithm utilizes user ratings and other user behavior to make predictive recommendations on what other users within the same segment might like. The recommendation engine has no understanding of what it is recommending—whether a movie is really interesting, or the music is catchy— instead relying on millions of bits of data to make suggestions. The more data, the better the recommendations. And the more customers rank the suitability of the recommendations, the smarter the engine gets. This is probably the most effective approach, but is not suitable for a brand new business that lacks the data to power it.

A content-based approach requires excellent tagging skills for the content the subscription service is offering, which will be analyzed against user data such as ratings, behavior, and their specific interests. To deliver the recommended content in real-time, you’ll almost certainly need to budget a serious chunk of your budget of both money and time to algorithmic development, as it’s unlikely you’d be able to acquire anything suitable as a commodity product. Personalized recommendation services need to be … personalized.

Getting Personal with Your Customers

After deciding whether your engine will be fueled by a content or collaborative approach, you’ll want to mine customer profile and usage information to develop persona-based segments based on the content you already know that specific group of users enjoys/values. For example, a news subscription service may have a segment of subscribers who are intensely interested in political news, while another group is fully focused on the financial markets. With some users, you may want to push breaking news, while others might enjoy long-form content that they can leisurely peruse during a long commute.

When you have your segments in place, you can repurpose the data to develop tempting offerings tailored for each group to reward best customers and lure new ones. You can also utilize user data in tandem with customer usage patterns, support interactions, and social media conversations to predict when a major churn event is looming on the horizon—perhaps due to a competitor’s new offer, or dissatisfaction with your offering. This same data will reveal what a business is doing right so that you can do more of it.

Put Your Data to Work

The issue with Big Data is that it’s BIG. Storing and processing it can eat up network resources and budgets. Segregated silos can slow the flow of the data stream, impacting availability. Long waits for IT to prepare data for analysis will thwart any attempt at serving up recommendations in real-time—and real-time capacity is critical for recommendation engines. These and other complications result in data—and a recommendation engine—that doesn’t live up to its business potential.

Apache Hadoop addresses all of the problems that plague Big Data-driven initiatives. It provides affordable storage on commodity machines and fully supports data integration from multiple sources across different data storage technologies. Used in conjunction with tools such as Apache Drill, it enables self-service data exploration using unstructured, semi-structured, and structured data.

If you’re interested in learning more about machine learning, I suggest reading the free ebook, Practical Machine Learning: Innovations in Recommendation by Ted Dunning. 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Predictive Analytics

Gliding through Traffic with Big Data

5 Min Read

Consolidation in the Social Software Market Continues: VMware Acquires SocialCast

5 Min Read

Strata Review by Ted Leung

1 Min Read

Think Outside the Box, But Design Within the Framework

13 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?