Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Performance benefits of linking R to multithreaded math libraries
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Performance benefits of linking R to multithreaded math libraries
Business Intelligence

Performance benefits of linking R to multithreaded math libraries

DavidMSmith
DavidMSmith
8 Min Read
SHARE

R wasn’t originally designed as a multithreaded application — multiprocessor systems were still rare when the R Project was first conceived in the mid-90’s — and so, by default, R will only use one processor of your dual-core laptop or quad-core desktop machine when doing calculations. For calculations that take a long time, like big simulations or modeling of large data sets, it would be nice to put those other processors to use to speed up the computations. There are several parallel processing libraries for R available that allow you to explicitly run loops in R simultaneously (ideally, each on a different processor), but using them does require you to rewrite your code accordingly. 

But there is a way to make use of all your processing power for many computations in R, without changing a line of code. That’s because R is a statistical computing system, and at the heart of many of the algorithms you use on a daily basis — data restructuring, regressions, classifications, even some graphics functions — is linear algebra. The data are transformed into vector and matrix objects, and the internals of R have been cleverly designed to link to a standard “BLAS” API to …

R wasn’t originally designed as a multithreaded application — multiprocessor systems were still rare when the R Project was first conceived in the mid-90’s — and so, by default, R will only use one processor of your dual-core laptop or quad-core desktop machine when doing calculations. For calculations that take a long time, like big simulations or modeling of large data sets, it would be nice to put those other processors to use to speed up the computations. There are several parallel processing libraries for R available that allow you to explicitly run loops in R simultaneously (ideally, each on a different processor), but using them does require you to rewrite your code accordingly. 

More Read

data modeling
Data Design Is Not Optional
Identity Crisis
Benefits of Using AI for Facebook Retargeting In 2021
7 Accounting Practice Management Software that Rely on AI
Next Generation Warranty Systemsv

But there is a way to make use of all your processing power for many computations in R, without changing a line of code. That’s because R is a statistical computing system, and at the heart of many of the algorithms you use on a daily basis — data restructuring, regressions, classifications, even some graphics functions — is linear algebra. The data are transformed into vector and matrix objects, and the internals of R have been cleverly designed to link to a standard “BLAS” API to perform calculations on vectors and matrices. The binaries provided by the R Core Group on CRAN (with one exception, see below) are linked to an “internal BLAS which is well-tested and will be adequate for most uses of R”, but is not multi-threaded and so only uses one core. But the beauty of linking to the BLAS API is that you can re-compile R to link to a different, multi-threaded BLAS library and, voilà, suddenly many computations are using all cores and therefore run much faster.

The MacOS port of R on CRAN is linked to ATLAS, a “tuned” BLAS that uses multiple cores for computations. As a result, R on a multi-core Mac (as all new Macs are these days) really zooms. But the Windows binaries on CRAN are not linked to an optimized BLAS. It’s possible to compile and link R yourself, but it can be tricky.

That’s what we do at Revolution for our Windows and Linux distributions of Revolution R. When we compile R, we link it to the Intel Math Kernel Libraries, which includes a high-performance BLAS implementation tuned to multi-core Intel chips. “Tuning” here means using efficient algorithms, optimized assembly code that exploits features of the chipset, and multi-threaded algorithms that use all cores simultaneously. As a result, you get some serious speed boosts for many operations in R, especially on a multi-core system. Here are some examples:

CalculationSizeCommandR 2.9.2Revolution R
(1 core)
Revolution R
(4 cores)

Matrix Multiply
A*A’ 
10000×5000B <- crossprod(A)243 sec22 sec5.9 sec

Cholesky Factorization5000×5000C <- chol(B)23 sec3.8 sec1.1 sec

Singular Value Decomposition5000×5000S <- svd (A,nu=0,nv=0)62 sec13 sec4.9 sec

Principal Components Analysis10000×5000P <- prcomp(A)237 sec41 sec15.6 sec

As you can see, using the Intel MKL libraries on a 4-core machine gives some dramatic speedups (about a quarter of the 1-core time, as you might expect). Perhaps more surprisingly, using the Intel MKL libraries on a 1-core machine is also faster than using R’s standard BLAS library: this is a result of the optimized algorithms, not additional computing power. You even get improvements on non-Intel chipsets (like AMD).

[A side note: These calculations were actually all run on an 8-core machine, specifically, an Intel Xeon 8-core CPU with 18 GB system RAM running Windows Server 2008 operating system. The complete benchmark code is available on this page. The results for Revolution R 1-core and 4-core were calculated by restricting the Intel MKL library to use 1 thread and 4 threads, using the Revolution-R-specific commands setMKLthreads(1) and setMKLthreads(4) respectively. This has the effect of using only the power of the specific number of cores, even when more cores are available. Note: if you’re using Revolution R and are doing explicit parallel programming with doSMP, it’s a good idea to call setMKLthreads(1) first. Otherwise, your parallel loops and the multi-threaded linear algebra computations will compete for the same processor and actually degrade performance.]

These results are dramatic, but multi-threaded BLAS libraries aren’t a panacea. Not all R commands ultimately link to BLAS code, even ones you might expect. (For example, lm for regression uses a non-BLAS QR decomposition by default.) And if your R code ultimately does not involve linear algebra, you can’t expect any improvement at all. (For example, the “Program Control” R benchmarks by Simon Urbanek show only marginal performance gains in Revolution R.) This is when explicit parallel programming is the route to improved performance. We’re also working on dedicated statistical routines for Revolution R Enterprise that are explicitly multi-threaded for single-machines and also distributable to multiple machines in a cluster or in the cloud, but that’s a topic for another post.

Revolution Analytics: Performance Benchmarks

Link to original post

TAGGED:performance managementr project
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Open Source is Opening Data to Predictive Analytics

7 Min Read

I Tweet Therefore I Am

3 Min Read

A New Kind Of Data Warehousing Will Emerge in 2011 According To Gartner

0 Min Read

#26: Here’s a thought…

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?