Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Decision engines in financial services
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Decision engines in financial services
Business IntelligencePredictive Analytics

Decision engines in financial services

JamesTaylor
JamesTaylor
6 Min Read
SHARE

The use of technology to automate and manage decisions, especially high volume decisions essential to day-to-day operational execution, is expanding rapidly. Beginning with the consumer credit business, use of decision engines and decision management has spread to all aspects of financial services and increasingly beyond. The primary drivers for this expansion are threefold–the increasing capability of decision engines, the increasing importance of analytics to businesses and the recognition of customer centricity as a core competence.

Decision engines have become increasingly capable over the last few years. Not only are vertically specialized decision engines more numerous and better established, general purpose platforms suitable for building decision engines are taking great strides. Business rules management systems have matured and improved. The ease with which large numbers of rules can be managed and governed, the extent to which rules can be safely exposed to non-technical users to edit, the simulation of the business impact of a rule change and the integration with business analytics for risk or opportunity modeling have all seen dramatic improvement …

More Read

The scope of IT’s responsibility when businesses go bad
Big Data Analytics: The Four Pillars
What does it take to succeed in Social Games?
Winter of 1933 and a Story About My Second Favorite Carpenter in History
A story about the power of rules to improve analytic decisions

This is a piece I wrote for Chris Pratt’s quarterly financial institutions newsletter

The use of technology to automate and manage decisions, especially high volume decisions essential to day-to-day operational execution, is expanding rapidly. Beginning with the consumer credit business, use of decision engines and decision management has spread to all aspects of financial services and increasingly beyond. The primary drivers for this expansion are threefold–the increasing capability of decision engines, the increasing importance of analytics to businesses and the recognition of customer centricity as a core competence.

Decision engines have become increasingly capable over the last few years. Not only are vertically specialized decision engines more numerous and better established, general purpose platforms suitable for building decision engines are taking great strides. Business rules management systems have matured and improved. The ease with which large numbers of rules can be managed and governed, the extent to which rules can be safely exposed to non-technical users to edit, the simulation of the business impact of a rule change and the integration with business analytics for risk or opportunity modeling have all seen dramatic improvement across multiple vendors. Several purpose-built decisioning platforms have gained market traction, offering built-in support for champion/challenger testing as well as analytic integration. Both kinds of platform have been specialized into vertical specific decision engines and both offer tremendous value “filling the gaps” between commercially available decision engines for originations, fraud etc. Institutions can now realistically manage all the operational decisions that matter across their lines of business – the technology is ready.

As these platforms improve and are more broadly adopted it is clear that one way in which they offer tremendous value is in the effective deployment and application of business analytics. We are seeing increasing investments in high-end business analytics (data mining, risk scoring, predictive analytics and so on). More and more organizations are making analytics central to their overall growth and profitability plans. The power of analytics to simplify data while amplifying its value and to turn uncertainty about the future into usable probabilities make analytics compelling to every aspect of how a company runs its business. When analytics must be applied to the front line, the deployment of those analytics becomes a critical success factor and decision engines have proven themselves again and again in this regard. With over 50% of models not making it into production and recent surveys still showing most companies spending 6-12 months deploying models, the use of decision engines to deploy analytics is rapidly gaining acceptance as the best way to address these challenges.

Finally decision engines are playing a central role in the move to customer centricity. When a company wants to make decisions about marketing offers, about pricing or about retention based on the value of the customer they face numerous challenges. Once the data from multiple channels and product lines is pulled together and analyzed, the need to push the resulting customer-centric analytic models and decisions out to every channel becomes critical. Once again decision engines, especially some of the newer decisioning platforms focused on customer treatment, make it easier to deploy, monitor and manage these customer-centric analytics.

Decision engines have been around a long time, handling complex yet high volume decisions. Increasing capability, a focus on analytics and the need to become customer centric make decision engine technology a must-have for companies of all sizes. Adopting decision management, getting serious about improving and automating operational decisions, is no longer optional.

Link to original post

TAGGED:analyticsdata managementdecision management
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Watson Analytics: The Data Scientist Accelerator

10 Min Read

Defining Analytics: Data, Information and Knowledge

5 Min Read

New Companies Making Their Fortunes Powered By Analytics And Business Intelligence

3 Min Read
data enrichment and analytics
AnalyticsBest PracticesBig DataData ManagementExclusive

How Data Enrichment Is A Force Multiplier In Analytics

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?