By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Factoids, Stories and Insights
Share
Notification Show More
Latest News
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > Factoids, Stories and Insights
Business IntelligenceData Visualization

Factoids, Stories and Insights

RamaRamakrishnan
Last updated: 2010/03/10 at 4:14 PM
RamaRamakrishnan
7 Min Read
SHARE

Recently, The Economist had a special report titled “Data, data everywhere“. The report examines the rapid increase in data volumes and what the implications are. The report got the attention of the blogosphere (example) and I recommend taking a look if you haven’t already.

When I read articles like these, I try to extract three categories of “knowledge” for future use: factoids, stories, and insights.

  • Factoids are simply data points that I feel might come in handy someday
  • Stories are real-world anecdotes. The most memorable ones have an “aha!” element to them.
  • Insights are observations (usually at a higher level of abstraction than stories) that make me go “I never thought of that before. But it makes total sense.”

Think of this crude categorization as my personal approach to dealing with information overload. Of course, there’s a fair amount of subjectivity here: what I think of as an insight may be obvious to you and vice-versa.

So what did I make of The Economist article? There were numerous factoids that I cut-and-stored away (too many to list here but email me if you want the list)…

More Read

data visualization for small business

Data Visualization Boosts Business Scalability with Sales Mapping

5 Best Practices for Extracting, Analyzing, and Visualizing Data
5 Ways to Streamline Your Business Data for Maximum Efficiency
10 Important Ways Data Visualization Can Benefit Your Content Strategy
From Raw Data to Visualization: Marvel Social Graph Analysis

Recently, The Economist had a special report titled “Data, data everywhere“. The report examines the rapid increase in data volumes and what the implications are. The report got the attention of the blogosphere (example) and I recommend taking a look if you haven’t already.

When I read articles like these, I try to extract three categories of “knowledge” for future use: factoids, stories, and insights.

  • Factoids are simply data points that I feel might come in handy someday
  • Stories are real-world anecdotes. The most memorable ones have an “aha!” element to them.
  • Insights are observations (usually at a higher level of abstraction than stories) that make me go “I never thought of that before. But it makes total sense.”

Think of this crude categorization as my personal approach to dealing with information overload. Of course, there’s a fair amount of subjectivity here: what I think of as an insight may be obvious to you and vice-versa.

So what did I make of The Economist article? There were numerous factoids that I cut-and-stored away (too many to list here but email me if you want the list), a few memorable stories, and a couple of insights.

Let’s start with the stories.

In 2004 Wal-Mart peered into its mammoth databases and noticed that before a hurricane struck, there was a run on flashlights and batteries, as might be expected; but also on Pop-Tarts, a sugary American breakfast snack. On reflection it is clear that the snack would be a handy thing to eat in a blackout, but the retailer would not have thought to stock up on it before a storm.

Memorable and concrete. Neat.

Consider Cablecom, a Swiss telecoms operator. It has reduced customer defections from one-fifth of subscribers a year to under 5% by crunching its numbers. Its software spotted that although customer defections peaked in the 13th month, the decision to leave was made much earlier, around the ninth month (as indicated by things like the number of calls to customer support services). So Cablecom offered certain customers special deals seven months into their subscription and reaped the rewards.

Four months before the customer defected, early-warning signs were beginning to appear. Nice but not particularly unexpected.

Airline yield management improved because analytical techniques uncovered the best predictor that a passenger would actually catch a flight he had booked: that he had ordered a vegetarian meal.

Hey, I knew this all along! Over 20 years, I have ordered vegetarian meals almost every time and have almost never missed a flight.

Just kidding. This came out of left field, I have never seen it before. While the claim that airline yield management improved substantially due to this single discovery feels like a stretch, the story is certainly memorable.

Sometimes those data reveal more than was intended. For example, the city of Oakland, California, releases information on where and when arrests were made, which is put out on a private website, Oakland Crimespotting. At one point a few clicks revealed that police swept the whole of a busy street for prostitution every evening except on Wednesdays, a tactic they probably meant to keep to themselves.

Worry-free Wednesdays! Great story, difficult to forget.

Let’s now turn to the two insights that stood out for me.

a new kind of professional has emerged, the data scientist, who combines the skills of software programmer, statistician and storyteller/artist to extract the nuggets of gold hidden under mountains of data.

This wasn’t completely new to me (I have friends whose job title is “Data Scientist”) but seeing the sentence in black-and-white crystallized the insight for me and made me appreciate the power of the trend. Particularly the point that the data scientist needs to be at the intersection of programming, stats and story-telling.

As more corporate functions, such as human resources or sales, are managed over a network, companies can see patterns across the whole of the business and share their information more easily.

What the author means by “managed over a network” is “managed in the cloud”. In my experience, data silos are all too common and this often leads to decisions being optimized one silo at a time, even though optimizing across silos can produce dramatic benefit.

I had not appreciated that, as data for more and more business functions gets housed in the cloud, data silos will naturally disappear and it will become increasingly easier to optimize across functions.

Well, that was what I gleaned from the article. If you “extract knowledge” in a different way than factoids/stories/insights, do share in the comments – I would love to know.

Link to original post

TAGGED: data visualization, information overload
RamaRamakrishnan March 10, 2010
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data visualization for small business
Data Visualization

Data Visualization Boosts Business Scalability with Sales Mapping

7 Min Read
big data visualization
Data Visualization

5 Best Practices for Extracting, Analyzing, and Visualizing Data

6 Min Read
streamline business data effectively
Big Data

5 Ways to Streamline Your Business Data for Maximum Efficiency

6 Min Read
Data Visualization
Data Visualization

10 Important Ways Data Visualization Can Benefit Your Content Strategy

13 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?