Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Here’s how to build on Business Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > Here’s how to build on Business Analytics
Business IntelligenceCRMData MiningPredictive Analytics

Here’s how to build on Business Analytics

JamesTaylor
JamesTaylor
7 Min Read
SHARE

As I blogged earlier, at the SAS Global Forum this week some SAS speakers drew a distinction between Business Intelligence – BI – and Business Analytics. I worry that this is a distinction without a difference and that it fell short of what SAS can offer its customers. Neil Raden, on his blog, dismissed the difference as “all fluff” and suggested we use an old but very meaningful phrase “decision support”. Like Neil, I noticed that the word “decision” was conspicuously absent from the SAS framework. Neil wondered how “this framework leads to making better [decisions]” and this made me think – what could a company do to build on the SAS Business Analytics framework?

Decision support to decision automation

The first step would be to look at the analytics you are developing and ask the question “what decision is this assisting?” Understanding the decision-making of analytic users, those who see the reports or dashboards, would clarify what analytics you need to make further progress and make it obvious who was the true consumer of each analytic. Understanding, for instance, that the reason out of stock predictions are being added to a particular report is that the supply chain manager uses it to place replenishment orders w…

More Read

Top Ten People to Follow in the Social CRM Space and Why (pt. 1)
Top Tips for Keeping Your AI Startup’s IT Staff Inspired
Can Advancements In Data Science Address The Challenges To Cybersecurity?
Social Business Intelligence Is No Fleeting Glance
Analysts Don’t Get No Respect – SDC Blogarama topic for November 14

As I blogged earlier, at the SAS Global Forum this week some SAS speakers drew a distinction between Business Intelligence – BI – and Business Analytics. I worry that this is a distinction without a difference and that it fell short of what SAS can offer its customers. Neil Raden, on his blog, dismissed the difference as “all fluff” and suggested we use an old but very meaningful phrase “decision support”. Like Neil, I noticed that the word “decision” was conspicuously absent from the SAS framework. Neil wondered how “this framework leads to making better [decisions]” and this made me think – what could a company do to build on the SAS Business Analytics framework?

The first step would be to look at the analytics you are developing and ask the question “what decision is this assisting?” Understanding the decision-making of analytic users, those who see the reports or dashboards, would clarify what analytics you need to make further progress and make it obvious who was the true consumer of each analytic. Understanding, for instance, that the reason out of stock predictions are being added to a particular report is that the supply chain manager uses it to place replenishment orders would show that it this report is being used to decide if a particular product should be ordered this week or not. Knowing that this is the decision being supported – how your reports generate action – might show you that other formats, other analytics would also be helpful and would clarify the analytic sophistication of the consumers of the results.

Once you know what decisions are being supported you can ask yourself questions like:

  • are there rules or constraints that also impact these decisions?
  • how do the decision makers apply these rules – are they repeatable?
  • does the decision maker have more productive things to be doing with their time than reviewing these reports and making these decisions – would it be worth offloading the decision to a system?
  • if a system made this decision would it be made quicker (overnight rather than in the morning, for instance) and would that add any value?
  • would the company run more effectively or efficiently if someone else controlled the way this decision was made?
  • can I break up this decision into lots of micro-decisions and get more targeted, more personalized, more focused?

Decision support to decision automationThe answers to these kinds of questions help clarify where on the range of pure decision support to pure decision automation a given decision might fall.In our book, Smart (Enough) Systems, we use this graphic to explain how these range works.

Strategic low-volume, high individual value decisions tend to require decision support where an expert or knowledge worker needs interactive analytic tools. Tactical decisions tend to be higher volume and more standardized “business analytics” are called for. Decision automation, however, starts to add value because there are often repeatable steps or rules to follow also. Finally operational decisions, high volume decisions with low individual value, are those where reports and dashboards should be replaced with embedded analytic models coupled with business rules to implement policy and regulations, expertise and know-how. This decision automation may not deliver “the answer” – it may just restrict the allowed answers to a short list – but some or all of the decision making process is automated.

Using business analytics to deliver predictive reporting and predictive dashboards is a great way to build decision support systems but applying Decision Management so that analytics can also be applied when operational decisions call for decision automation will allow SAS customers to make every decision analytically based. Decision management puts predictive analytics to work whether decisions are made by machines or by busy people with too little time to read a report (such as most call center or retail staff, for instance) or by people with no particular skill at interpreting data.


Link to original post

TAGGED:business analyticsdecision management
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Attensity Uses Social Media Technology for Smarter Customer Engagement

5 Min Read

Here’s a couple of skills developers will need in the years ahead

4 Min Read

Am I a Realist or a Dreamer?

4 Min Read

Three Sites to Check Out for Business Analytics Info

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?