By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Physicists, models, and the credit crisis, ctd.
Share
Notification Show More
Latest News
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
ai for small business tax planning
Maximize Tax Deductions as a Business Owner with AI
Artificial Intelligence
ai in marketing with 3D rendering
Marketers Use AI to Take Advantage of 3D Rendering
Artificial Intelligence
How Big Data Is Transforming the Maritime Industry
How Big Data Is Transforming the Maritime Industry
Big Data
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Physicists, models, and the credit crisis, ctd.
Data MiningPredictive Analytics

Physicists, models, and the credit crisis, ctd.

DavidMSmith
Last updated: 2009/03/21 at 3:44 PM
DavidMSmith
5 Min Read
SHARE

Allen Engelhardt, physicist and former quant, provides a thoughtful response to my post the other day, where I asked, “Do physicists and engineers get similar [statistical] training?”

“Of course we do”, says Allen. He makes the point, though, that statisticians and physicists have different world-views.  A physicist will “(first) try to understand the model … He will run thought experiments. Then he might run some statistical tests against the data.”  I agree that’s a different process than that for a statistician, where in practice the data often come first and then, after data cleaning and exploratory analysis, a model is refined. 

I’d go so far as to say that even the word “model” means different things in the two disciplines.  In physics a model is a “true” representation of a reality, invariant and concrete … at least until some errant data point is discovered and a new model can be proposed, tested, and accepted. I use “true” there in quotes to reflect that scientific process: Newton’s Three Laws were “true” reflections of the physical world until relativity called for a new “true” model.  For a statistician in most disciplines, though, a model is merely a useful summariza…

More Read

SAS Innovates into the Big Data Analytics Era

Big Data Social Intelligence: Five Reasons Corporations Need It
Adventures in MOOC: Back to School
Using Geographic Data
Singularity: Is the brain too complex to model?

Allen Engelhardt, physicist and former quant, provides a thoughtful response to my post the other day, where I asked, “Do physicists and engineers get similar [statistical] training?”

“Of course we do”, says Allen. He makes the point, though, that statisticians and physicists have different world-views.  A physicist will “(first) try to understand the model … He will run thought experiments. Then he might run some statistical tests against the data.”  I agree that’s a different process than that for a statistician, where in practice the data often come first and then, after data cleaning and exploratory analysis, a model is refined. 

I’d go so far as to say that even the word “model” means different things in the two disciplines.  In physics a model is a “true” representation of a reality, invariant and concrete … at least until some errant data point is discovered and a new model can be proposed, tested, and accepted. I use “true” there in quotes to reflect that scientific process: Newton’s Three Laws were “true” reflections of the physical world until relativity called for a new “true” model.  For a statistician in most disciplines, though, a model is merely a useful summarization of noisy data. It reflects not an invariant truth about the underlying process that generated data, but a tool for identifying important effects and, sometimes, to make predictions.

I think we’re both in agreement that the problem isn’t the models themselves, or even the estimates from the models, but how those estimates were used and — crucially — by whom. Says Allen: “We knew and understood that the models were not valid on the tails, but there was no volume of trading on the tails, so it wasn’t very interesting.” That’s fine and dandy for the high-volatility trading group, where only consequences were the daily ups and downs within that one group. The danger came only when that model became a component of a VaR statistic reported to the upper management from the risk group, when the nuance of “not valid in the tails” was lost when it came to assigning capital allocation.

Allen goes on to say “Society is often expected to pick up the bill for tail effects… the cost of prevention may be bigger than the cost of fixing it.” Perhaps. But I certainly hope it remains in a financial institutions selfish self-interest (and I mean that only in a positive way) to avoid bankruptcy. This takes us into a longer discussion about the conflict between an individual banker’s short-term self-interest, and the long-term best interests of a bank. (I think Surowiecki had a column on this topic recently, but I can’t find it now.). But if there’s any lesson to be learned here, I hope it results in practices that lead these banks to understand the limitations of their modeling practices so that such failures can be avoided next time.

TAGGED: modeling
DavidMSmith March 21, 2009
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
ai for small business tax planning
Maximize Tax Deductions as a Business Owner with AI
Artificial Intelligence
ai in marketing with 3D rendering
Marketers Use AI to Take Advantage of 3D Rendering
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

SAS Innovates into the Big Data Analytics Era

9 Min Read
Image
Business IntelligenceCRMMarket ResearchSocial DataSocial Media AnalyticsUnstructured Data

Big Data Social Intelligence: Five Reasons Corporations Need It

10 Min Read

Adventures in MOOC: Back to School

4 Min Read
using geographic data in analysis
Uncategorized

Using Geographic Data

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?