By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Why Large Enterprises and EDW Owners Suddenly Care About Big Data
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Why Large Enterprises and EDW Owners Suddenly Care About Big Data
AnalyticsBest PracticesData WarehousingStatisticsText Analytics

Why Large Enterprises and EDW Owners Suddenly Care About Big Data

SmartAnalytics
Last updated: 2012/03/13 at 10:32 AM
SmartAnalytics
5 Min Read
SHARE

While most of big data is geared towards social media and stream analytics, traditional EDW can also best leverage the power of Big Data. The concept of Big Data is not new, banks have been doing it for a while using mainframe size computers. The reason it’s being talked so much now is that for the first time, cheap and massive computing power and even cheaper memory has put mainframe size power in the hands of every organization, right at the time when organizations have been struggling to justify the ROI in processing such exponential data volume.

While most of big data is geared towards social media and stream analytics, traditional EDW can also best leverage the power of Big Data. The concept of Big Data is not new, banks have been doing it for a while using mainframe size computers. The reason it’s being talked so much now is that for the first time, cheap and massive computing power and even cheaper memory has put mainframe size power in the hands of every organization, right at the time when organizations have been struggling to justify the ROI in processing such exponential data volume.

 BI Cost, BI, Business Intelligence

More Read

predictive analytics and POS use

Predictive Analytics Is Lifting The ROI Of POS Marketing

How Real-Time Analytics Can Help Assess ROI Of Toll-Free Call Support
Measuring Social Media ROI: Leveraging Data To Boost Results
AI Is Empowering Everyone to Become Their Own Branding Expert
How Can I Prove Content Marketing Generates ROI?

Big Data is not a performance engine. i.e. it is not a traditional database that can run queries faster. It will also not replace traditional reporting strategies. What it can do is, it can batch process millions and billions of records both unstructured and structured much faster and cheaper. What has also become possible with BigData Analytics is the ability to merge all analysis into one platform. As a direct result, data analysis has become more accurate, well-rounded, reliable and focused on a specific business capability/advantage.

Before investing money in buying commodity hardware and calling consultants to wave the big data magic wands, companies should do a lot of soul-searching because once you set the wheels in motion, it is likely to take up lot of your organization’s focus. To decide where you are in the BigData spectrum it is important to look at the 4 V’s – Volume, Velocity, Variety and Variability of your data as shown in the info-graphic below. 

Big Data, Bigdata, BI, Business Intelligence

BigData, Big Data, Business Analytics, Business Intelligence

A key question to ask would be, if you have enough data volumes at the source to justify the use of Big Data processing (Average Data set > 300GB). If you don’t, you should consider investing in building a traditional enterprise data warehouse and fine tuning your reporting metrics. If yes, you should move on to the next question of how you want to process this amount of data.

One of the key technologies that is widely being accepted by large Enterprises for BigData Processing is Hadoop. While this technology provides the processing power, the algorithms to make sense of this data will still need to be developed in-house. The most frequent application for Hadoop is to support the “Transform” in traditional ETL (Extract, Transform, Load), where the data is in myriad of unstructured, semi-structured, and structured formats and loaded into terabyte-scale analytical data marts where predictive modelers and other data scientists can work their magic.

Hadoop and traditional EDW technologies can co-exist in the same ecosystem as shown below. Each has its own strengths and when combined provides a potent mix for your analytical needs that we have seen in few large companies.

Traditional EDWs built on relational, columnar, and other approaches for storing, manipulating, and managing data will continue to exist. All of your investments in pre-Hadoop EDWs, data marts, operational data stores and the likes are reasonably safe from obsolescence.

The reality here is that the EDW is evolving into a virtualized cloud ecosystem in which all of these database architectures can and will coexist in a pluggable “Big Data” storage layer alongside HDFS, HBase (Hadoop’s columnar database), Cassandra (a sibling Apache project that supports peer-to-peer persistence for complex event processing and other real-time applications), Neo4j (graph database), and other “NoSQL” platforms.

Beginning with a Bigdata implementation really boils down to one basic question, do you have the use cases for it? We will post few sample use cases that are being adopted by large enterprises in our next posting. Stay tuned….

 

TAGGED: roi
SmartAnalytics March 13, 2012
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

iot and cloud technology
IoT And Cloud Integration is the Future!
Internet of Things
ai in marketing
4 Ways AI Can Improve Your Marketing Strategy
Artificial Intelligence
data security unveiled
Data Security Unveiled: Protecting Your Information in a Connected World
Security
it management for data-driven businesses
7 Major IT Infrastructure Challenges for Data-Driven Companies
IT

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

predictive analytics and POS use
ExclusivePredictive Analytics

Predictive Analytics Is Lifting The ROI Of POS Marketing

6 Min Read
call center support
AnalyticsExclusivePredictive Analytics

How Real-Time Analytics Can Help Assess ROI Of Toll-Free Call Support

8 Min Read
leveraging social data for ROI
AnalyticsBig DataExclusiveSocial DataSocial mediaSocial Media Analytics

Measuring Social Media ROI: Leveraging Data To Boost Results

19 Min Read
artificial intelligence AI disrupting marketing and branding
Artificial IntelligenceBusiness IntelligenceExclusive

AI Is Empowering Everyone to Become Their Own Branding Expert

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?