Using multiple business intelligence tools in an implementation – Part I

May 16, 2009
174 Views

linkedinThe Data Warehousing InstituteThe Data Warehousing Institute (TDWI™) 2.0

Introduction

This post follows on from a question that was asked on the LinkedIn.com Data Warehousing Institute (TDWI™) 2.0 group. Unfortunately the original thread is no longer available for whatever reason, but the gist of the question was whether anyone had experience with using a number of BI tools to cover different functions within an implementation. So the scenario might be: Tool A for dashboards, Tool B for OLAP, Tool C for Analytics, Tool D for formatted reports and even Tool E for visualisation.

In my initial response I admitted that I had not faced precisely this situation, but that I had worked with the set-up shown in the following diagram, which I felt was not that dissimilar:

An example of a multi-tier BI architecture with different tools

An example of a multi-tier BI architecture with different tools

Here there is no analytics tool (in the statistical modelling sense – Excel played that role) and no true visualisation (unless you count graphs in PowerPlay that is), but each of dashboards, OLAP cubes, formatted reports and simple list reports are present. The reason that this arrangement might not at first sight appear pertinent to the question asked on LinkedIn.com is that two


linkedinThe Data Warehousing InstituteThe Data Warehousing Institute (TDWI™) 2.0

Introduction

This post follows on from a question that was asked on the LinkedIn.com Data Warehousing Institute (TDWI™) 2.0 group. Unfortunately the original thread is no longer available for whatever reason, but the gist of the question was whether anyone had experience with using a number of BI tools to cover different functions within an implementation. So the scenario might be: Tool A for dashboards, Tool B for OLAP, Tool C for Analytics, Tool D for formatted reports and even Tool E for visualisation.

In my initial response I admitted that I had not faced precisely this situation, but that I had worked with the set-up shown in the following diagram, which I felt was not that dissimilar:

An example of a multi-tier BI architecture with different tools

An example of a multi-tier BI architecture with different tools

Here there is no analytics tool (in the statistical modelling sense – Excel played that role) and no true visualisation (unless you count graphs in PowerPlay that is), but each of dashboards, OLAP cubes, formatted reports and simple list reports are present. The reason that this arrangement might not at first sight appear pertinent to the question asked on LinkedIn.com is that two of the layers (and three of the report technologies) are from one vendor; Cognos at the time, IBM-Cognos now. The reason that I felt that there was some relevance was that the Cognos products were from different major releases. The dashboard tool being from their Version 8 architecture and the OLAP cubes and formatted reports from their Version 7 architecture.
 
 
A little history

London Bridge circa 1600

London Bridge circa 1600

Maybe a note of explanation is necessary as clearly we did not plan to have this slight mismatch of technologies. We initially built out our BI infrastructure without a dashboard layer. Partly this was because dashboards weren’t as much of a hot topic for CEOs when we started. However, I also think it also makes sense to overlay dashboards on an established information architecture (something I cover in my earlier article, “All that glisters is not gold” – some thoughts on dashboards, which is also pertinent to these discussions).

When we started to think about adding icing to our BI cake, ReportStudio in Cognos 8 had just come out and we thought that it made sense to look at this; both to deliver dashboards and to assess its potential future role in our BI implementation. At that point, the initial Cognos 8 version of Analysis Studio wasn’t an attractive upgrade path for existing PowerPlay users and so we wanted to stay on PowerPlay 7.3 for a while longer.

The other thing that I should mention is that we had integrated an in-house developed web-based reporting tool with PowerPlay as the drill down tool. The reasons for this were a) we had already trained 750 users in this tool and it seemed sensible to leverage it and b) employing it meant that we didn’t have to buy an additional Cognos 7 product, such as Impromptu, to support this need. This hopefully explains the mild heterogeneity of our set up. I should probably also say that users could directly access any one of the BI tools to get at information and that they could navigate between them as shown by the arrows in the diagram.

I am sure that things have improved immensely in the Cognos toolset since back then, but at the time there was no truly seamless integration between ReportStudio and PowerPlay as they were on different architectures. This meant that we had to code the passing of parameters between the ReportStudio dashboard and PowerPlay cubes ourselves. Although there were some similarities between the two products, there were also some differences at the time and these, plus the custom integration we had to develop, meant that you could also view the two Cognos products as essentially separate tools. Add in here the additional custom integration of our in-house reporting application with PowerPlay and maybe you can begin to see why I felt that there were some similarities between our implementation and one using different vendors for each tool.

I am going to speak a bit about the benefits and disadvantages of having a single vendor approach later, but for now an obvious question is “did our set-up work?” The answer to this was a resounding yes. Though the IT work behind the scenes was maybe not the most elegant (though everything was eminently supportable), from the users’ perspective things were effectively seamless. To slightly pre-empt a later point, I think that the user experience is what really matters, more than what happens on the IT side of the house. Nevertheless let’s move on from some specifics to some general comments.
 
 
The advantages of a single vendor approach to BI

One-stop shopping

One-stop shopping

I think that it makes sense if I lay my cards on the table up-front. I am a paid up member of the BI standardisation club. I think that you only release the true potential of BI when you take a broad based approach and bring as many areas as you can into your warehouse (see my earlier article, Holistic vs Incremental approaches to BI, for my reasons for believing this).

Within the warehouse itself there should be a standardised approach to dimensions (business entities and the hierarchies they are built into should be the same everywhere – I’m sure this will please all my MDM friends out there) and to measures (what is the point if profitability is defined different ways in different reports?). It is almost clichéd nowadays to speak about “the single version of the truth”, but I have always been a proponent of this approach.

I also think that you should have the minimum number of BI tools. Here however the minimum is not necessarily always one. To misquote one of Württemberg’s most famous sons:

Everything should be made as simple as possible, but no simpler.

What he actually said was:

It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience.

but maybe the common rendition is itself paying tribute to the principle that he propounded. Let me pause to cover what are the main reasons quoted for adopting a single vendor approach in BI:

  1. Consistent look-and-feel: The tools will have a common look-and-feel, making it easier for people to use them and simplifying training.
  2. Better interoperability: Interoperability between the tools is out-of-the-box, saving on time and effort in developing and maintaining integration.
  3. Clarity in problem resolution: If something goes wrong with your implementation, you don’t get different vendors blaming each other for the problem.
  4. Simpler upgrades: You future proof your architecture, when one element has a new release, it is the vendor’s job to ensure it works with everything else, not yours.
  5. Less people needed: You don’t need to hire an expert for each different vendor tool, thereby reducing the size and cost of your BI team.
  6. Cheaper licensing: It should be cheaper to buy a bundled solution from one vendor and ongoing maintenance fees should also be less.

This all seems to make perfect sense and each of the above points can be seen to be reducing the complexity and cost of your BI solution. Surely it is a no-brainer to adopt this approach? Well maybe. Let me offer some alternative perspectives on each item – none of these wholly negates the point, but I think it is nevertheless worth considering a different perspective before deciding what is best for your organisation.

  1. Consistent look-and-feel: It is not always 100% true that different tools from the same vendor have the same look-and-feel. This might be down to quality control at the vendor, it might be because the vendor has recently acquired part of their product set and not fully integrated it as yet, or – even more basically – it may be because different tools are intended to do different things. To pick one example from outside of BI that has frustrated me endlessly over the years: PowerPoint and Word seem to have very little in common, even in Office 2007. Hopefully different tools from the same vendor will be able to share the same metadata, but this is not always the case. Some research is probably required here before assuming this point is true. Also, picking up on the Bauhaus ethos of form dictating function, you probably don’t want to have your dashboard looking exactly like your OLAP cubes – it wouldn’t be a dashboard then would it? Additional user training will generally be required for each tier in your BI architecture and a single-vendor approach will at best reduce this somewhat.
  2. Better interoperability: I mention an problem with interoperability of the Cognos toolset above. This is is hopefully now a historical oddity, but I would be amazed if similar issues do not arise at least from time to time with most BI vendors. Cognos itself has now been acquired by IBM and I am sure everyone in the new organisation is doing a fine job of consolidating the product lines, but it would be incredible if there were not some mismatches that occur in the process. Even without acquisitions it is likely that elements of a vendor’s product set get slightly out of alignment from time to time.
  3. Clarity in problem resolution: This is hopefully a valid point, however it probably won’t stop your BI tool vendor from suggesting that it is your web-server software, or network topology, or database version that is causing the issue. Call me cynical if you wish, I prefer to think of myself as a seasoned IT professional!
  4. Simpler upgrades: Again this is also most likely to be a plus point, but problems can occur when only parts of a product set have upgrades. Also you may need to upgrade Tool A to the latest version to address a bug or to deliver desired functionality, but have equally valid reasons for keeping Tool B at the previous release. This can cause problems in a single supplier scenario precisely because the elements are likely to be more tightly coupled with each other, something that you may have a chance of being insulated against if you use tools from different vendors.
  5. Less people needed: While there might be half a point here, I think that this is mostly fallacious. The skills required to build an easy-to-use and impactful dashboard are not the same as building OLAP cubes. It may be that you have flexible and creative people who can do both (I have been thus blessed myself in the past in projects I ran), but this type of person would most likely be equally adept whatever tool they were using. Again there may be some efficiencies in sharing metadata, but it is important not to over-state these. You may well still need a dashboard person and an OLAP person, if you don’t then the person who can do both with probably not care about which vendor provides the tools.
  6. Cheaper licensing: Let’s think about this. How many vendors give you Tool B free when you purchase Tool A? Not many is the answer in my experience, they are commercial entities after all. It may be more economical to purchase bundles of products from a vendor, but also having more than one in the game may be an even better way of ensuring that cost are kept down. This is another area that requires further close examination before deciding what to do.

 
 
A more important consideration

Overall it is still likely that a single-vendor solution is cheaper than a multi-vendor one, but I hope that I have raised enough points to make you think that this is not guaranteed. Also the cost differential may not be as substantial as might be thought initially. You should certainly explore both approaches and figure out what works best for you. However there is another overriding point to consider here, the one I alluded to earlier; your users. The most important thing is that your users have the best experience and that whatever tools you employ are the ones that will deliver this. If you can do this while sticking to a single vendor then great. However if your users will be better served by different tools in different tiers, then this should be your approach, regardless of whether it makes things a bit more complicated for your team.

Of course there may be some additional costs associated with such an approach, but I doubt that this issue is insuperable. One comparisons that it may help to keep in mind is that the per user cost of many BI tools is similar to desktop productivity tools such as Office. The main expense of BI programmes is not the tools that you use to deliver information, but all the work that goes on behind the scenes to ensure that it is the right information, at the right time and with the appropriate degree of accuracy. The big chunks of BI project costs are located in the four pillars that I consistently refer to:

  1. Understand the important business decisions and what figures are necessary to support these.
  2. Understand the data available in the organisation, how it relates to other data and to business decisions.
  3. Transform the data to provide information answering business questions.
  4. Focus on embedding the use of information in the corporate DNA.

The cost of the BI tools themselves are only a minor part of the above (see also, BI implementations are like icebergs). Of course any savings made on tools may make funds available for other parts of the project. It is however important not to cut your nose off to spite your face here. Picking right tools for the job, be they from one vendor or two (or even three at a push) will be much more important to the overall payback of your project than saving a few nickels and dimes by sticking to a one-vendor strategy just for the sake of it.
 


Continue reading about this area in: Using multiple business intelligence tools in an implementation – Part II

 

tweet thisTweet this article on twitter.com
Bookmark this article with:
Technorati| del.icio.us| digg| Reddit| NewsVine

 

Posted in business, business analytics, business intelligence, change management, cultural transformation, dashboards, data warehousing, it business alignment, management information, project management, technology Tagged: bi, business analytics, business intelligence, information technology, it business alignment, it management, it projects, it strategy, management information