Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: When Ideology Reigns Over Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > When Ideology Reigns Over Data
AnalyticsCollaborative DataCommentaryData QualityExclusiveModelingPolicy and GovernanceStatisticsTransparency

When Ideology Reigns Over Data

paulbarsch
paulbarsch
6 Min Read
Image
SHARE

Image

Increasingly, the mantra of “let the data speak for themselves” is falling by the wayside and ideology promotion is zooming down the fast lane. There are dangers to reputations, companies and global economies when researchers and/or statisticians either see what they want to see—despite the data, or worse, gently massage data to get “the right results.”

Image

Increasingly, the mantra of “let the data speak for themselves” is falling by the wayside and ideology promotion is zooming down the fast lane. There are dangers to reputations, companies and global economies when researchers and/or statisticians either see what they want to see—despite the data, or worse, gently massage data to get “the right results.”

More Read

8 examples of machine learning technology
8 Revolutionary Applications Examples of Machine Learning in Real-Life
4 Ways Digital Businesses Use Data Analytics For Email Risk Scores
Modern Marketers Combining Big Data with Yahoo Answers for Viral Traffic
Decision Management and software development III – DSLs
Can We Automate Data Mining?

Economist Thomas Piketty is in the news. After publishing his treatise “Capital in the Twenty First Century”, Mr. Piketty was lauded by world leaders, fellow economists, and political commentators for bringing data and analysis to the perceived problem of growing income inequality.

In his book, Mr. Piketty posits that while wealth and income were grossly unequally distributed through the industrial revolution era, the advent of World Wars I and II changed the wealth dynamic as tax raises helped pay for war recovery and social safety nets. Then, after the early 1970s, Piketty claims that once again his data show the top 1-10% of earners take more than their fair share. In Capital, Piketty’s prescriptions to remedy wealth inequality include an annual tax on capital and harsh taxation of up to 80% for the highest earners.

In this age of sharing and transparency, Mr. Piketty received acclaim for publishing his data sets and Excel spreadsheets for the entire world to see. However, this bold move could also prove to be his downfall.

The Financial Times, in a series of recent articles, claims that Piketty’s data and Excel spreadsheets don’t exactly line up with his conclusions. “The FT found mistakes and unexplained entries in his spreadsheet,” the paper reports. The articles also mention that a host of “transcription errors”, “incorrect formulas” and “cherry-picked” data mar an otherwise serious body of work.  

Once all the above errors are corrected, the FT concludes; “There is little evidence in Professor Piketty’s original sources to bear out the thesis that an increasing share of total wealth is held by the richest few.” In other words, ouch!

Here’s part of the problem; while income data are somewhat hard to piece together, wealth data for the past 100 years is even harder to find because of data quality and collection issues. As such, the data are bound to be of dubious quality and/or incomplete. In addition, it appears that Piketty could have used some friends to check and double check his spreadsheet calculations to save him the Ken Rogoff/Carmen Reinhardt treatment.

In working with data, errors come with the territory and hopefully they are minimal. There is a more serious issue for any data worker however; seeing what you want to see, even if the evidence says otherwise.

For example, Nicolas Baverez, a French economist raised issues with Piketty’s data collection approach and “biased interpretation” of those data long before the FT report.  Furthermore, Baverez thinks that Piketty had a conclusion in mind before he analyzed the data. In the magazine Le Point, Baverez writes; “Thomas Piketty has chosen to place himself under the shadow of (Karl Marx), placing unlimited accumulation of capital in the center of his thinking”.

The point of this particular article is not to knock down Mr. Piketty, nor his lengthy and researched tome. Indeed we should not be so dismissive of Mr. Piketty’s larger message that there appears to be an increasing gap between haves and have nots, especially in terms of exorbitant CEO pay, stagnant middle class wages, and reduced safety net for the poorest Western citizens.

But Piketty appeared to have a solution in mind before he found a problem. He will readily admit; “I am in favor of wealth taxation.”  When ideology drives any data driven approach, it becomes just a little easier to discard data, observations and evidence that don’t exactly line up with what you’re trying to prove.

In 1977, statistician John W. Tukey said; “The greatest value of a picture is when it forces us to notice what we never expected to see.” Good science is the search for causes and explanations, sans any dogma, and willingness to accept outcomes contrary to our initial hypothesis. If we want true knowledge discovery, there can be no other way.

TAGGED:risky business
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
AnalyticsCommentaryExclusiveModelingPredictive AnalyticsWorkforce AnalyticsWorkforce Data

The Math Says Yes, But Human Behavior Says No

6 Min Read
Image
Big DataCloud ComputingCommentaryExclusiveITRisk Management

Adapting to Winds of Change

3 Min Read
Image
AnalyticsBest PracticesBig DataCommentaryCulture/LeadershipData VisualizationData WarehousingExclusiveHadoopHardwareOpen SourcePredictive AnalyticsRisk Management

Beware of Big Data Technology Zealotry

5 Min Read
Image
AnalyticsBig DataExclusive

The Center of Analytics Success Takes on Communication Skills

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?