By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: What Should Data Developers Know About Kubernetes Troubleshooting?
Share
Notification Show More
Latest News
big data mac performance
Data-Driven Tips to Optimize the Speed of Macs
News
3 Ways AI Has Helped Marketers and Creative Professionals Streamline Workflows
3 Ways AI Has Helped Marketers and Creative Professionals Streamline Workflows
Artificial Intelligence
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > What Should Data Developers Know About Kubernetes Troubleshooting?
Programming

What Should Data Developers Know About Kubernetes Troubleshooting?

Kubernetes is a great open source application for big data development, but you need to know how to troubleshoot properly.

Ryan Kh
Last updated: 2021/09/22 at 9:52 PM
Ryan Kh
8 Min Read
Kubernetes troubleshooting tips for data developers
Shutterstock Photo License - By dennizn
SHARE

We have previously talked about some of the open source tools available to create big data projects. Kubernetes is one of the most important that all big data developers should be aware of.

Contents
Common Types of Kubernetes Issues that Data Developers Must RecognizeBig Data Application IssuesNetwork Connectivity IssuesExternal Network ConnectivityInternal Network ConnectivityPod Configuration IssuesNode Related IssuesCluster Service/Component IssuesInfrastructure IssuesTroubleshooting Kubernetes IssuesTroubleshooting is a Vital Process for Data Application Developers Using Kubernetes

Kubernetes has become the leading container orchestration platform to manage containerized data-rich environments at any scale. It has vastly simplified container deployment and management yet with the added complexity of managing clusters. Therefore, we need to understand the underlying architecture as well as common issues in order to speed up the Kubernetes troubleshooting process if you want to create big data applications.

Common Types of Kubernetes Issues that Data Developers Must Recognize

Due to the complexity of Kubernetes, it can take considerable time and resources to troubleshoot issues in even relatively small K8s clusters such as dev or testing environments, especially if they have massive amounts of data sets. However, we can simplify this process by categorizing different issue types and narrowing down the troubleshooting scope for data-driven developers.

Big Data Application Issues

The first thing we need to ensure when troubleshooting Kubernetes is that the application is working as expected. This can be a challenge for applications that are highly dependent on complex data sets. Otherwise, we will be unnecessarily troubleshooting an issue that is not related to Kubernetes. This can be done by testing container functionality either in a holistic data-driven test environment or even in a local environment. This is one of the most important things to be aware of as a data-driven software developer.

More Read

ai in software development

3 AI-Based Strategies to Develop Software in Uncertain Times

Cloud Helps Russian Developers Gain Global Popularity
Key Criteria When Hiring AI Software Development Agency
Roles of Python Developer in Data Science Teams
6 Tips for Building a Successful AI Software Business

Network Connectivity Issues

Connectivity issues can be categorized as internal connectivity issues that occur within the cluster and external connectivity issues that block access to the cluster or third-party data sets.

External Network Connectivity

Kubernetes clusters can be configured with external load balancers and firewalls to further enhance and complement internal Kubernetes configurations. In these instances, we need to check if any issues or configurations of these external networking resources block the Kubernetes cluster.

Internal Network Connectivity

Kubernetes network will consist of the following connectivity types;

  • Container to container
  • Pod to Pod
  • Pod to service
  • Service to external sources

Each connectivity type can contribute to a multitude of errors. The ideal approach for troubleshooting these network connectivity issues is to start from external connectivity options like k8s ingress and then move to services like load balancers, node ports, then pods, and finally, container connectivity. With each step, we reduce the troubleshooting scope by simply checking if communication between the correct resources happens.

Pod Configuration Issues

One of the most common issues faced by Kubernetes admins is Pod configuration issues. These issues can range from faulty deployment configurations, container image corruptions to issues in the node itself. However, they are also the simplest to diagnose as Kubernetes provides clear error messages indicating the root cause of an issue. Furthermore, we can easily figure out issues related to pods by looking at the Pod status or using describe or log commands.

Node Related Issues

These issues occur when the worker nodes are experiencing issues. Various node-related issues such as network issues, hardware failures, data loss or failures in provisioning issues in a node can directly impact pod creation and management, which will in turn directly impact the application. Kubernetes has built-in redundancy, which enables the application to recover even if some nodes fail. However, these node failures can cause performance degradations, and the best way to avoid such scenarios is to try to mitigate node failures. The Node Problem Detector provides an ideal solution to monitor the health of the k8s nodes and ensure maximum data stability.

Cluster Service/Component Issues

Kubernetes consists of multiple components that are required for smooth cluster operations. Especially different types of controllers from replication controllers, scaling controllers to resource controllers like node controller, services controller, etc. Issues in these components can even lead to complete cluster failures as they deal with the core functionality of Kubernetes. Thus, high availability architecture is used in most production environments to mitigate such errors. It enables the cluster to function normally even if one Kubernetes control plane fails.

Infrastructure Issues

Infrastructure-related issues are only applicable for self-managed Kubernetes clusters as the service provider is responsible for all the infrastructure in managed solutions. These issues are highly dependent on the underlying hardware and software configurations, requiring considerable time and effort to pinpoint and remedy them. As these infrastructure issues are outside the scope of Kubernetes, users will need external monitoring and diagnostic tools and services to help troubleshoot them.

Troubleshooting Kubernetes Issues

Kubernetes comes with an excellent toolset for monitoring, logging, and debugging. Therefore, it is essential to utilize all these inbuilt tools and services when troubleshooting Kubernetes clusters.

The kubectl itself provides a simple yet powerful command set to troubleshoot Kubernetes resources easily. These commands include the describe command to obtain information on Pods/Nodes, exec command to gain shell access to a container, etc. Resource metric pipeline that uses the Metrics API (kubectl top) is also a great tool for getting a broader understanding of the behavior of K8s resources quickly.

Another factor is logs. Logs are sometimes underappreciated yet critical to troubleshooting as they can provide a complete view of the issues and events that led to a particular issue. K8s logging architecture provides a robust platform to enable cluster-level logging utilizing third-party logging backends to store and analyze data.

On top of that, we can use third-party tools and services to complement inbuilt tools and simplify Kubernetes troubleshooting even further. Crash-Diagnostics and KubeEye are examples of some open-source external k8s troubleshooting tools.

Troubleshooting is a Vital Process for Data Application Developers Using Kubernetes

Kubernetes troubleshooting is itself a complex subject matter. However, as Kubernetes users, we must be able to troubleshoot K8s without being overwhelmed by this complexity. The best approach is to minimize the troubleshooting scope and use all the tools and services at your disposal to identify and resolve Kubernetes issues easily.

TAGGED: data-driven software development, open source software strategy, software development
Ryan Kh September 22, 2021
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
By Ryan Kh
Follow:
Ryan Kh is an experienced blogger, digital content & social marketer. Founder of Catalyst For Business and contributor to search giants like Yahoo Finance, MSN. He is passionate about covering topics like big data, business intelligence, startups & entrepreneurship. Email: ryankh14@icloud.com

Follow us on Facebook

Latest News

big data mac performance
Data-Driven Tips to Optimize the Speed of Macs
News
3 Ways AI Has Helped Marketers and Creative Professionals Streamline Workflows
3 Ways AI Has Helped Marketers and Creative Professionals Streamline Workflows
Artificial Intelligence
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

ai in software development
Software

3 AI-Based Strategies to Develop Software in Uncertain Times

9 Min Read
russian programmers
Cloud Computing

Cloud Helps Russian Developers Gain Global Popularity

20 Min Read
traits to look for when hiring employees for your AI startup
News

Key Criteria When Hiring AI Software Development Agency

10 Min Read
hire the right python developers for your data science team
Python

Roles of Python Developer in Data Science Teams

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?