Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Takeaways From Your Next Predictive Analytics Conference
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > Takeaways From Your Next Predictive Analytics Conference
AnalyticsModelingPredictive Analytics

Takeaways From Your Next Predictive Analytics Conference

DeanAbbott
DeanAbbott
7 Min Read
predictive analytics
SHARE

Why should one go to a predictive analytics conference? What should one take home from a conference like Predictive Analytics World (PAW)? There are many reasons conferences are valuable, including interacting with thought leaders and practitioners, seeing software and hardware tools (the exhibit hall), and learning principles of predictive analytics from talks and workshops. This post focuses on the talks, and in particular, case studies.

Why should one go to a predictive analytics conference? What should one take home from a conference like Predictive Analytics World (PAW)? There are many reasons conferences are valuable, including interacting with thought leaders and practitioners, seeing software and hardware tools (the exhibit hall), and learning principles of predictive analytics from talks and workshops. This post focuses on the talks, and in particular, case studies.

predictive analytics

There is no quicker way to upgrade our capabilities than having someone else who has “been there” tell us how they succeeded in their development and implementation of predictive models. When I go to conferences, this is at the top of my list. In the best case studies I am able to see different way of looking at a problem than I had considered before, how the practitioner overcame obstacles, how their target variable was defined, what data was used in building the models, how the data was prepared, what figure of merit they used to judge a model’s effectiveness, and much more.

More Read

Eli Goldratt and Tom H. C. Anderson Discuss Sales Forecasting
Smart Business Intelligence Applications For the iPhone in 2016
The Big Question In Big Data Is…What’s The Question?
Flip that Data!
Every Cloud Has a Silver Lining

Almost all case studies we see at conferences are success stories; we all love winners. Yes, we all know that we learn from mistakes and many case studies actually enumerate mistakes. But success sells and given time limitations in a 20-50 minute talk, few mistakes and dead-ends are usually described in the talks. And, as we used to say in when I was doing government contracting, one works like crazy on the research and then when the money runs out, one declares victory. Putting a more positive spin on the process, we do as well as we can with the resources we have, and if the final solution improves the current system, we are indeed successful.

But once we observe the successful approach, what can we really take home with us? There are three reasons we should be skeptical taking case studies and applying them directly to our own problems.

The first two reasons are straightforward. First, our data is different from the data used in the talk. Obviously. But it is likely to be different enough that one cannot not take the exact same approach to data preparation or target variable creation that one sees at a conference.

Second, our business is different. The way the question was framed and the way predictions can be used are likely to differ in our organization. If we are building models to predict Medicare fraud, they way the “suspicious” claim is processed and which data elements are available vary significantly for each provider (codes being just one example).

The third reason is more subtle and more difficult to overcome. In a fascinating New Yorker article entitled, “The Truth Wears Off: Is there something wrong with the scientific method?”, author Jonah Lehrer describes an effect seen by many researchers over the past few decades. Findings in major studies, published in reputable journals, and showing statistically significant results have been difficult to replicate by the original researcher and by others. This is a huge problem because replicating results is what we do as predictive modeler: we assume that behavior in the past can and will be replicated in the future.

In one example, researcher Jonathan Schooler (who was originally at the University of Washington as a graduate student) “demonstrated that subjects shown a face and asked to describe it were much less likely to recognize the face when shown it later than those who had simply looked at it. Schooler called the phenomenon ‘verbal overshadowing’. The study turned him into an academic star.”

A few years later, he tried to replicate the study didn’t succeed. In fact, he tried many times over the years and never succeeded. The effect he found at first waned each time he tried to replicate the study with additional data. “This was profoundly frustrating. It was as if nature gave me this great result and then tried to take it back.” There have been a variety of potential explanations for the effect, including “regression to the mean.” This might very well be the case because even when we show statistically significant results defined by having a p value less than 0.05, there is still a chance that the effect found was not really there at all. Over thousands of studies, dozens find effects therefore that aren’t really there.

Let’s assume we are building models and there is actually no significant difference between responders and non-responders (but we don’t know that). However, we work very hard to identify an effect, and eventually we find the effect on training and testing data. We publish. But the effect isn’t there; we happened upon the effect just had good luck (which in the long run is actually bad luck!). Even if the chance of finding the effect by chance is 1 in 100, or 1 in 1000, if we experiment enough and search through enough variables, we may happen upon a seemingly good effect eventually. This process, called “over searching” by Jensen and Cohen (see “Multiple Comparisons in Induction Algorithms“), is real and a real danger.

So what do we do at conferences? We should take home ideas, principles, and approaches rather than recipes. It should spur us to try ideas we either hadn’t yet tried or even thought about before. 

TAGGED:business intelligenceconferences
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

cloud ERP implementation
Uncategorized

When Does Cloud ERP Start Saving Money?

6 Min Read
tangible data
Big DataBusiness IntelligenceData QualityExclusive

In the Digital Age, Tangible Data Still Matters?

7 Min Read

BI 2010 – BI Competency Centers

5 Min Read
ebooks on big data and business intelligence
Big DataBook ReviewBusiness IntelligenceExclusive

5 Free eBooks On Big Data And Business Intelligence

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?