Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Preparation: Know Your Records!
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Data Preparation: Know Your Records!
Data MiningData QualityPredictive Analytics

Data Preparation: Know Your Records!

DeanAbbott
DeanAbbott
4 Min Read
SHARE

Data preparation in data mining and predictive analytics (dare I also say Data Science?) rightfully focuses on how the fields in one’s data should be represented so that modeling algorithms either will work properly or at least won’t be misled by the data. These data preprocessing steps may involve filling missing values, reigning in the effects of outliers, transforming fields so they better comply with algorithm assumptions, binning, and much more.

Data preparation in data mining and predictive analytics (dare I also say Data Science?) rightfully focuses on how the fields in one’s data should be represented so that modeling algorithms either will work properly or at least won’t be misled by the data. These data preprocessing steps may involve filling missing values, reigning in the effects of outliers, transforming fields so they better comply with algorithm assumptions, binning, and much more.

In recent weeks I’ve been reminded how important it is to know your records. I’ve heard this described in many ways, four of which are:

  • the unit of analysis
  • the level of aggregation
  • what a record represents
  • unique description of a record

For example, does each record represent a customer? If so, over their entire history or over a time period of interest? In web analytics, the time period of interest may be a single session, which if it is true, means that an individual customer may be in the modeling data multiple times as if each visit or session is an independent event. Where this especially matters is when disparate data sources are combined.

More Read

Miss the Right Connections at Your Own Peril
How a highly-variable point estimate becomes a headline
XBRL: How to Save a Good Idea from a Bad Implementation
A Record Named Duplicate
INSA Report: Cloud Computing: Risks, Benefits, and Mission Enhancement for the Intelligence Community

If one is joining a table of customerID/Session data with another table with each record representing a customerID, there’s no problem. But if the second table represents customerID/store visit data, there will obviously be a many-to-many join resulting in a big mess. This is probably obvious to most readers of this blog. What isn’t always obvious is when our assumptions about the data result in unexpected results.

What if we expect the unit of analysis to be customerID/Session but there are duplicates in the data? Or what if we had assumed customerID/Session data but it was in actuality customerID/Day data (where ones customers typically have one session per day, but could have a dozen)?

The answer is just like we need to perform a data audit to identify potential problems with fields in the data, we need to perform record audits to uncover unexpected record-level anomalies. We’ve all had those data sources where the DBA swears up and down that there are no dups in the data, but when we group by customerID/Session, we find 1000 dups. So before the joins and after joins, we need to do those group by operations to find examples with unexpected numbers of matches.

In conclusion: know what your records are supposed to represent, and verify verify verify. Otherwise, your models (who have no common sense) will exploit these issues in undesirable ways!

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Educating Respondents on Market Research

2 Min Read
using predictive analytics
AnalyticsExclusivePredictive Analytics

How Wix Is Using Predictive Analytics To Deliver Top-Tier Websites

8 Min Read

CRM Paradigm Shift

6 Min Read

Why I Donate to Wikipedia

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?