Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: No Extract, Transform and Load? Really?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > No Extract, Transform and Load? Really?
Data ManagementData Warehousing

No Extract, Transform and Load? Really?

Raju Bodapati
Raju Bodapati
4 Min Read
Image
SHARE

ImageThere are some new data aqusition tools that help reduce Extract, Transform and Load (ETL) and related support costs drastically.

ImageThere are some new data aqusition tools that help reduce Extract, Transform and Load (ETL) and related support costs drastically. Kalido claims in their sales pitch, “Free Yourself From ETL,” that their information engine eliminates the need for ETL. I agree to some extent for specific business situations, but marketing these tools as if they would eliminate need for ETL is quite a stretch. I am a big advicate of auto generated code replacing custom coding in data integration. I am also a big advocate of building reusable objects and transformations with the ETL realm. These best practices help save costs and manage resources better. I do not beilve every single ETL challenge is solvable by tools.

I can understand why an average project sponsor gets enticed by claims like no ETL and small prototypes, I would like to highlight the following facts about the nature of data acqusition work in an enterprise setting:

  • The ETL developer needs solid skills in design, architecture, performance tuning, general programming abilities and writing complex SQLs. Even if the code is generated by the tools, the developer should be capable of understanding how to make the tool do the right things the right way. Given the role requirements, good ETL developers do not come cheep.
  • Quick and dirty work, to be replaced later hurts data programs the most. It’s quite costly to not do it right on the first pass.
  • Typically, the ETL engines need to accomodate the changes in any of the source systems or the target systems.
  • Enterprise governance standards related to reference and master data use, data integrity, data quality, information security are all enforced by the ETL engines.

Therefore, by eliminating ETL with a drag and drop tools without knowing the adverse impacts to enterprise data enablement can land the average project sponsors in to serious trouble.

More Read

SMB
3 Reasons Your SMB Isn’t Growing
Safeguarding Patient Data in EHRs
Data, Data and More Data [Infographic]
Delivering Data Warehousing and BI Projects using Agile
B2B Software Startups: The SaaS Platform Dilemma

In order to take the best advantage of the data acqusition tools that claim to eliminate or reduce ETL, make sure that the business situation where this can be experimented on. The following are some such business scenarios,

  • Temporary data acqusition work for semi-adhoc or adhoc needs of a few selected user champions. This may be throw-a-away work.
  • Explorative endeavors on a data source that is not yet clearly understood. Let us say the organization just acquired a new company and needs to bring in and integrate new company’s data with the old company’s data. In order to accomplish this task fast, one strategy may be to provide power users of both organizations an access to the relevant data of the other company. In scenarios such as this, tools can provide a first-cut access to the new enterprise data in a bit of a raw form.
  • There is only one source system to the data mart or enterprise dataware house or there is really no need to match up master data between different sources system. This is a low risk business scenatio to eliminate complex ETL processes.

In summary, while “No ETL” is a bit of stretch, there is some merit in considering tools like Kalido for some specific business scenarios to reap the benefits of low ETL costs as well as better speed of delivery.

image: data movement/shutterstock

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News
edge networks in manufacturing
Edge Infrastructure Strategies for Data-Driven Manufacturers
Big Data Exclusive
data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Global Workforce
Business IntelligenceBusiness RulesCloud ComputingCollaborative DataCulture/LeadershipMobility

Leveraging The Cloud, New Technology and Video To Effectively Manage A Growing Global Workforce

7 Min Read
social media cybersecurity
ExclusiveITRisk ManagementSecurity

Understanding the Cybersecurity Implications of Daily Social Media Use

5 Min Read
Image
Data ManagementSoftware

How to Give Your Organization the Best Chance for DevOps Success

6 Min Read
big data predictive analytics
AnalyticsBest PracticesBig DataBusiness IntelligenceData ManagementData MiningMarket ResearchMarketingPredictive Analytics

Selecting Big Data Sources for Predictive Analytics

10 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?