Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Interactive Analytics and OLAP – Part II
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Interactive Analytics and OLAP – Part II
AnalyticsPredictive Analytics

Interactive Analytics and OLAP – Part II

raqsoft
raqsoft
0 Min Read
SHARE

After the first stage of real application process of the OLAP in interactive analytics and OLAP – Part I, we will start OLAP application of stage 2. 

After the first stage of real application process of the OLAP in interactive analytics and OLAP – Part I, we will start OLAP application of stage 2. 

Those guesses in part I of interactive data analytics are just the basis for forecast. After operating for a period of time, a constructed business system can also accumulate large quantities of data (so called complex data calculation), and these guesses have most probably been evaluated by these accumulated data, when evaluated to be true, they can be used in forecast; when evaluated to be false they will be re-guessed.

 It needs to be noted that these guesses are made by users themselves instead of the computer system! Instant data analytics is started by human being in OLAP. What a computer should do is to help a user to evaluate according to the existing data, the guess to be true or false, namely, on-line data query (including certain aggregation computation). This is just the application process of OLAP. The reason why on-line analysis is needed is that many query computations are temporarily required after a user has seen a certain intermediate result. In the whole process, model in advance is impossible and unnecessary (Raqsoft esProc is born to deal with these issues).

More Read

Big Data’s Big Flip-Flop
In Praise of Industry Models
Big Data Will Need 1.5 Million Data Scientists | Dice
Add Branded and Non-Branded Keywords separately in Google Analytics Dashboard
The Evolving Importance of Analytics in Generating Leads through PPC

We call the above process evaluation process, whose purpose is to find from historical data some laws or evidences for conclusions, and the means adopted is to conduct interactive query computation on historical data. And this process can be a complex data calculation.

  •        The following are a few examples actually requiring computations (or queries):
  •        The first n customers whose purchases from the company account for half of the sales volume of the company of the current year;
  •        The stocks which go up to the limit for three consecutive days within one month;
  •        Commodities in the supermarket which are sold out at 5 P.M for three times within one month;
  •        Commodities whose sales volumes in this month have decreased by more than 20% over those of the preceding month;

       …

Evidently, this type of computation demand is ubiquitous in business analysis process and all can be computed out from historical database.

Then, can the narrowed OLAP be used to complete the above-mentioned data computation process?

In the third part of Interactive Analytics and OLAP, i will answer the question above.

Sponsored by http://www.raqsoft.com

To be continued… 

Related Articles:

Interactive Analytics and OLAP – Part I

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

When Data Flows Faster Than It Can Be Processed

10 Min Read

But for scientists, tracking birds as they perform those feats…

1 Min Read

From Big Data to Big Personalization

1 Min Read

Customer Analytics Deserve More Than Spreadsheets

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?