Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Interactive Analytics and OLAP – Part II
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Interactive Analytics and OLAP – Part II
AnalyticsPredictive Analytics

Interactive Analytics and OLAP – Part II

raqsoft
raqsoft
0 Min Read
SHARE

After the first stage of real application process of the OLAP in interactive analytics and OLAP – Part I, we will start OLAP application of stage 2. 

After the first stage of real application process of the OLAP in interactive analytics and OLAP – Part I, we will start OLAP application of stage 2. 

Those guesses in part I of interactive data analytics are just the basis for forecast. After operating for a period of time, a constructed business system can also accumulate large quantities of data (so called complex data calculation), and these guesses have most probably been evaluated by these accumulated data, when evaluated to be true, they can be used in forecast; when evaluated to be false they will be re-guessed.

 It needs to be noted that these guesses are made by users themselves instead of the computer system! Instant data analytics is started by human being in OLAP. What a computer should do is to help a user to evaluate according to the existing data, the guess to be true or false, namely, on-line data query (including certain aggregation computation). This is just the application process of OLAP. The reason why on-line analysis is needed is that many query computations are temporarily required after a user has seen a certain intermediate result. In the whole process, model in advance is impossible and unnecessary (Raqsoft esProc is born to deal with these issues).

More Read

Image
Is Your Company Ready to Deploy Business Intelligence Intelligently?
IoT hits pay dirt where needs and capabilities align
Data 2.0 Summit: Live Coverage
Challenges and Opportunities in Big Data From Industry and Academia Panel
Investing in smarter infrastructure will create more than 949,000 new jobs in 2009

We call the above process evaluation process, whose purpose is to find from historical data some laws or evidences for conclusions, and the means adopted is to conduct interactive query computation on historical data. And this process can be a complex data calculation.

  •        The following are a few examples actually requiring computations (or queries):
  •        The first n customers whose purchases from the company account for half of the sales volume of the company of the current year;
  •        The stocks which go up to the limit for three consecutive days within one month;
  •        Commodities in the supermarket which are sold out at 5 P.M for three times within one month;
  •        Commodities whose sales volumes in this month have decreased by more than 20% over those of the preceding month;

       …

Evidently, this type of computation demand is ubiquitous in business analysis process and all can be computed out from historical database.

Then, can the narrowed OLAP be used to complete the above-mentioned data computation process?

In the third part of Interactive Analytics and OLAP, i will answer the question above.

Sponsored by http://www.raqsoft.com

To be continued… 

Related Articles:

Interactive Analytics and OLAP – Part I

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

NCAA Data Visualizer for March Madness Face-Offs

2 Min Read

A predictive enterprise

3 Min Read

Seth Godin talks to Tom H. C. Anderson about Marketing…

8 Min Read

Gain a 360-Degree Customer View with Data Analytics

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?