Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Interactive Analytics and OLAP – Part II
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Interactive Analytics and OLAP – Part II
AnalyticsPredictive Analytics

Interactive Analytics and OLAP – Part II

raqsoft
raqsoft
0 Min Read
SHARE

After the first stage of real application process of the OLAP in interactive analytics and OLAP – Part I, we will start OLAP application of stage 2. 

After the first stage of real application process of the OLAP in interactive analytics and OLAP – Part I, we will start OLAP application of stage 2. 

Those guesses in part I of interactive data analytics are just the basis for forecast. After operating for a period of time, a constructed business system can also accumulate large quantities of data (so called complex data calculation), and these guesses have most probably been evaluated by these accumulated data, when evaluated to be true, they can be used in forecast; when evaluated to be false they will be re-guessed.

 It needs to be noted that these guesses are made by users themselves instead of the computer system! Instant data analytics is started by human being in OLAP. What a computer should do is to help a user to evaluate according to the existing data, the guess to be true or false, namely, on-line data query (including certain aggregation computation). This is just the application process of OLAP. The reason why on-line analysis is needed is that many query computations are temporarily required after a user has seen a certain intermediate result. In the whole process, model in advance is impossible and unnecessary (Raqsoft esProc is born to deal with these issues).

More Read

Business Analytics: Correlation is Not Causation
Why Big Data and Machine Learning Will Be Essential To Drive App Development Growth
Want More Actionable Information from Your BI? Support Your IT Team’s Need for Data Warehouse Automation
How Social Intelligence Can Identify Weak Points in Your Customer Journey and Drive Decision-Making
Budget-Friendly Data Analysis Tools for Small and Scaling Businesses

We call the above process evaluation process, whose purpose is to find from historical data some laws or evidences for conclusions, and the means adopted is to conduct interactive query computation on historical data. And this process can be a complex data calculation.

  •        The following are a few examples actually requiring computations (or queries):
  •        The first n customers whose purchases from the company account for half of the sales volume of the company of the current year;
  •        The stocks which go up to the limit for three consecutive days within one month;
  •        Commodities in the supermarket which are sold out at 5 P.M for three times within one month;
  •        Commodities whose sales volumes in this month have decreased by more than 20% over those of the preceding month;

       …

Evidently, this type of computation demand is ubiquitous in business analysis process and all can be computed out from historical database.

Then, can the narrowed OLAP be used to complete the above-mentioned data computation process?

In the third part of Interactive Analytics and OLAP, i will answer the question above.

Sponsored by http://www.raqsoft.com

To be continued… 

Related Articles:

Interactive Analytics and OLAP – Part I

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai kids and their parents
How Cities Use AI to Improve Playground Design
Exclusive News
human resource data
The Integration of Employee Experience with Enterprise Data Tools
Big Data Exclusive
protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

sales and data analytics
AnalyticsBig DataExclusive

How Data Analytics Improves Lead Management and Sales Results

9 Min Read

How Big Data is Creating the Future of Science Fiction

4 Min Read

Text Analytics, The Difficult Future You Can’t Avoid

6 Min Read
use big data to research social media
AnalyticsBig DataExclusiveSocial Data

4 Ways To Use Big Data To Monitor Competitors On Social Media

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?