By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: A Day Late and Big Data Architecture Short
Share
Notification Show More
Latest News
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
ai for small business tax planning
Maximize Tax Deductions as a Business Owner with AI
Artificial Intelligence
ai in marketing with 3D rendering
Marketers Use AI to Take Advantage of 3D Rendering
Artificial Intelligence
How Big Data Is Transforming the Maritime Industry
How Big Data Is Transforming the Maritime Industry
Big Data
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Open Source > A Day Late and Big Data Architecture Short
AnalyticsCommentaryExclusiveITOpen Source

A Day Late and Big Data Architecture Short

paulbarsch
Last updated: 2015/06/29 at 6:18 AM
paulbarsch
5 Min Read
Image
SHARE

Image

Image

As humans, we have no problems staying busy. In fact, most of us are wired to “do something first” and ask questions later. In other words, our busyness often comes at the expense of a well thought out plan to tackle projects from the mundane to complex. In the world of big data, this can be a dreadful strategy, especially in light of investments that generally start in the hundreds of thousands of dollars and can easily eclipse $2-3 million for a decent deployment.

In Lewis Carroll’s, Alice’s Adventures in Wonderland, the Gryphon tells Alice; “No, no! The adventures first, explanations take such a dreadful time.”  Isn’t this human nature, to want to start something and worry about how things came to be/or should be after the fact?

More Read

Image

4 Business Risks That Might Prevent Big Data ROI

3 Big Data Potholes to Avoid
Is Cloud Sameness Dangerous to Competitive Advantage?
Wasted Breath: Data Alone Won’t Convince
Less Dogma Equals Better Decision Making

Last week I was in San Francisco at Spark Summit. As customary, I talked to customers about their big data plans. One particular person (who shall remain nameless) regaled me with stories of his Spark implementation (now in production) and how he had plans for a broader roll-out. When I asked him how Spark fit in his broader ecosystem, he sheepishly smiled that he really didn’t know. In fact, as I quizzed the gentleman a bit more, he admitted that his organization had not so much as a high level architecture diagram worked up of his big data ecosystem. It appeared to us both, that he was making up his big data plans as he went.

In another conversation this week, I talked to a fellow who designs airports, towering rises and large habitations for the global elite. He mentioned how stunned he was that clients would fuss about details such as the color of carpets first, over broader discussions on the design/architecture and functionality of the overall multi-billion dollar development.  

Indeed, time and again, in customer conversations around big data, there are rarely questions whether Hadoop and its ecosystem is the right investment. The challenge that keeps coming up revolves around “where to begin”, and more importantly “why”.

To answer the “why” in big data, you need to understand your use cases. And you need to understand your business case/s.  A compelling big data strategy should—at the very least—explain how Hadoop will be used to drive measurable business value, have a prioritized and sequenced roadmap signed off by business and technology stakeholders, and then include an architecture definition (preferably beyond the back of a napkin) that supports use cases to drive the business forward.

However, in the mad-dash to “do something” in big data, IT and business managers alike seem to continuously jump on the latest technology (today it’s Spark) and thus become inevitable case studies for Gartner’s well documented hype cycle.

Please don’t mistake the intent of this column. I have nothing against Apache Spark, and I believe it is a wonderful technology for now and the future. As are all the engines and YARN applications in the Hadoop ecosystem. But a technology without a plan for user acceptance, adoption and business value, is well—just a technology.

Want to do big data right? You will need to come to sound conclusions on your analytic priorities, architecture, technologies, skill sets and support model. Things that make sense for your particular business, not something you picked up at a conference that companies X, Y and Z are doing.

Because short of understanding of how the Hadoop ecosystem is exactly right for you, to borrow another quip from Alice in Wonderland’s Cheshire Cat; “If you don’t know where you’re going, any road will take you there.” 

TAGGED: risky business
paulbarsch June 29, 2015
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
ai for small business tax planning
Maximize Tax Deductions as a Business Owner with AI
Artificial Intelligence
ai in marketing with 3D rendering
Marketers Use AI to Take Advantage of 3D Rendering
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Image
Big DataBusiness IntelligenceRisk Management

4 Business Risks That Might Prevent Big Data ROI

5 Min Read
Image
Big Data

3 Big Data Potholes to Avoid

5 Min Read
Image
Uncategorized

Is Cloud Sameness Dangerous to Competitive Advantage?

5 Min Read
Image
CommentaryExclusive

Wasted Breath: Data Alone Won’t Convince

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?